

An analysis of the programmable Culturally Situated Design Tools from an HCI perspective.

William Babbitt

Rensselaer Polytechnic Institute

Presented at the Human Computer Interaction Symposium

Rensselaer Polytechnic Institute

Wednesday, December 5th 2012

Abstract

The Culturally Situated Design Tools (CSDTs) are software programs deployed online at http://csdt.rpi.edu.
The purpose of these tools is to teach mathematics and computer science concepts through simulation of cultural
artifacts. For example, the Adinkra programmable CSDT seeks to teach mathematics concepts through the Akan
(Ghana, West Africa) practice of Adinkra stamping. In this paper, I will analyze the programmable CSDTs
(pCSDTs) from a Human-Computer Interaction (HCI) point of view. I will examine how the pCSDTs incorporate
ethnographic design strategies from the initial software concept to the user experience. I will consider the role of
cognitive task loading in the overall software design for the pCSDTs. In addition, I will look at the role that mental
models play in the use of the pCSDTs and how understanding these mental models can leverage our improvement of
the development process.

Table of Contents

1. Introduction
2. Ethnographic Design
3. Mental Models
4. Cognitive Loading
5. Future Work
6. Conclusion
7. References

Introduction

The Culturally Situated Design Tools (CSDTs)
are web-based software applications available at
http://csdt.rpi.edu. They are the brainchild of Dr. Ron
Eglash, professor of Science and Technology Studies
at Rensselaer Polytechnic Institute. The purpose of
the CSDT tools is to teach mathematics concepts
through simulation of cultural arts. The tools teach a
variety of mathematical concepts that range from
transformational geometry, Cartesian and polar
coordinate systems, to pre-algebra. For example, the
Cornrow Curves CSDT tool uses the basic shape of a
cornrows plait to teach transformational geometry
through simulation of the cornrow braids in that
hairstyle. The Adinkra CSDT uses the Akan (Ghana,
West Africa) practice of Adinkra stamping to teach
the concepts of Cartesian and polar coordinates, as
well as linear and logarithmic spirals through
simulation of the Adinkra stamp shapes.

The CSDTs mission of teaching mathematical
concepts has been extended to teaching programming
and computer science concepts. The programmable
CSDTs (pCSDTs) build upon their CSDT
predecessors by adding the teaching of such concepts
as sequential code execution, looping and conditional
branching, along with the use of variables in
programming through simulation of these same
cultural artifacts.

In this paper, I will analyze the pCSDT tools
from an HCI point of view. We will look at how the
pCSDTs incorporate ethnographic design strategies
from the initial concept of a tool, to the user
experience of working with the tool. We will
consider the role that cognitive task loading in the
overall software design for the pCSDTs affects user
experience and user learning outcomes. In addition,
we will look at the role mental models play in use of
the tools and how understanding those mental models
can help to inform and leverage our improvements
through the development process.

Cornrow Curves, mathematics version

Cornrow Curves, programmable version

Ethnographic Design

The use of ethnography in human computer

interaction can mean different things to different
people, and the term can vary both in scope and
breadth in its use when we talk about HCI
relationships. Using an ethnographic approach in HCI
design can mean to gather qualitative information
about the tasks that users perform with a computer
system (Blomberg et. al, 2003). Using an
ethnographic approach in HCI design can be about
the way in which researchers approach the gathering
of this user information, or it can be about how
individual users perform specific tasks. In general,
we can consider ethnographies to be ‘user stories’
that recount the experiences of the users interaction

with a computer system that can be used to
understand and improve the use of that system.

In the case of the programmable CSDTs, I will
use the term ethnography both in its traditional
anthropologic sense, which is to gather stories about
how people live their everyday lives, which includes
how people produce craft items of cultural
significance. I will also use ethnography in its HCI
sense to refer to stories of student interaction
experiences with pCSDT simulation software. In the
first case, I would not be able to construct software
that seeks to simulate culturally significant crafts
without the invaluable perspective of the craft
artisans. In the second case, ethnographic studies
serve as the primary tool in software design that
communicates to us as developers whether or not the
software is succeeding at its intended purpose. In this
case the primary goal is to teach mathematics and
computer science concepts. Both sets of ethnographic
stories play an important role in informing the design
of the computer simulation, which results in an
accurate simulation design, as well as a competent
pedagogic approach for teaching mathematics and
computer science concepts.

In approaching ethnography for both the use and
design of the pCSDTs, keen observation has been
absolutely critical. Verbal statements may not always
match what the artisan or the user is actually feeling
or thinking (Blomberg et. al, 2008). The study
participant may not be able to adequately
communicate his or her feelings or thoughts to the
ethnographer in a way that will be understood. In this
ethnography work, I have attempted to adopt the
participant-observer role (Blomberg et. al, 2008)
which made me an active participant while recording
observations.

Ethnographic development stories

The programmable Adinkra stamping simulation

design has relied heavily on the ethnography's
provided by Gabriel Boakye, an Adinkra artisan in
Ghana, West Africa. I first met Gabriel in the
summer of 2011 and then again in 2012, at his
Adinkra shop in the little town of Ntonso, Ghana
where I was able to interview him about his Adinkra
stamping craft. There are many Adinkra artisans in

that area of Ghana, but Gabriel is arguably the
Adinkra master craftsman of the Ntonso village. In
my discussions with Gabriel, he has generously
provided invaluable information concerning the
symbolic meaning of Adinkra, all of the different
steps in creating Adinkra, from ink production and
stamp carving, to the actual stamping of the Adinkra
shapes on to woven fabric. It was from Gabriel that I
learned that each of the Adinkra stamp shapes
possess a culturally important meaning, and a crafts
person will carefully choose a combination of
Adinkra images to place on a fabric, resulting in an
Adinkra message. Gabriel also taught me that a fabric
does not become ‘Adinkra’ cloth until it has been
stamped with an Adinkra symbol.

Gabriel Boakye and the author discussing Adinkra stamping,

Ntonso Ghana in the summer of 2011.

From my experience with Gabriel in 2011, I
began to craft our Adinkra Culturally Situated Design
Tool. What would be needed was a way to
programmatically stamp on a computer screen the
different geometric shapes that are found within the
Adinkra stamps that Gabriel had shown us. It became
clear that the complicated Adinkra symbols could be
broken into smaller more manageable shapes such as
lines, linear spirals, and logarithmic spirals. These
three design elements could be assembled in building
block fashion with programmatic elements that
determined length, orientation, and constant or
varying thickness to reproduce the Adinkra symbols.
Actually, this part of the development proved to be
relatively easy, deciding how to represent the
programmatic elements would prove to be much
more of a challenge.

An important consideration in the design of the
Adinkra stamping simulation included determining

the degree of complexity exposed to the student
through the scripting interface. We have always
thought that this aspect of the simulation
development would be an exceptionally fine line to
navigate, but this struggle clearly had become the
greatest challenge. Being too cautious in exposing
complexity, which would in effect be making the
software ‘easier’ to use could result in user boredom;
however exposing too much complexity could
overwhelm users leading quickly to user frustration.
Gabriel provided us with guidance through the
ethnographic stories that he shared.

Adinkra is created through the act of stamping,
and as Gabriel stamps the images he is using already
carved stamps where such decisions concerning
angles and curves have already been fixed in the act
of carving the stamp. Likewise, in our simulation,
many of the representation particulars have already
been determined behind the scenes from the scripting
interface, in the code that each codelet represents.
The user does not need to be concerned about how to
get the image on to the screen; they just need be
concerned about the adjustments that result in the
output that the user desired. This reduction in
complexity is especially crucial to ‘get right’ because
it can be the determining factor of tool success or
failure with users.

I worked on the Adinkra stamping tool from the
summer of 2011 to the summer of 2012, when I was
able to present the software to Gabriel at his shop in
Ntonso. In our second encounter, I was able to gather
additional feedback that indicated that I did not have
everything exactly correct in the simulation. For
example, I had placed the Cartesian grid that serves
as scaffolding to the user, to aid in design element
placement, such that all four quadrants were available
to the user. Gabriel immediately determined that
from a craft point of view, an Adinkra artisan would
never look at stamp placement in that way. This was
a particularly interesting discussion because I had
made that design decision based on my desire to
include the four quadrants from a mathematics
pedagogic point of view. In the end, I deferred to
Gabriel and placed the entire simulation output
screen into the first quadrant with coordinates
running from 0 on the left increasing to the right and
vertically.

The Adinkra stamping software seeks to
reproduce the components of Adinkra stamp shapes
in simulation. These components include the use of
logarithmic spirals, linear spirals, as well as straight
lines of varying widths at varying angles. The
simulation itself takes place within the confines of a
Java applet that includes a scripting interface, and an
output window where the result of the script that has
been built by the user is displayed. The output
window also provides the graphical scaffolding of the
Cartesian grid to aid the user in composing their
Adinkra design. It is from the use of these software
components that we gather ethnographic user stories.

The author demonstrating the Adinkra stamping simulation to

Gabriel Boakye in the summer of 2012, Ntonso Ghana.

Ethnographic user stories

The ethnographic stories that can be gathered

from the users of the simulation software can focus
on specific portions of the software interface and can
tell us about these different software elements
depending on what we are interested in.
Ethnographies that focus on the scripting interface
will provide us with valuable information concerning
the efficacy of the tool in teaching computer science
topics such as iteration, conditional program flow and
algorithmic thinking. Ethnographies that concentrate
on the output window, will allow us to infer if the
tool is effective in knowledge transfer answering
such questions as ‘did the user produce an artifact
that demonstrates the use and understanding of the
mathematics or computer science concepts?’

Stories gathered from user experiences provided
crucial information in determining the appropriate
level of complexity for the scripting interface. For
example, an early question that arose in the
development process was how much of the

calculation for generating a logarithmic or linear
curve on the screen should be shown to the user, and
how much should just simply be handled behind the
scenes. One choice was to put a point on the screen
and then leave it to the user to take it from there. Had
we chosen that path, the script to create the curve
would have needed to involve the use of variables
and complex calculations. It quickly became clear the
complexity of the ‘dot’ approach was not desirable
from a user point of view, and we opted for a codelet
that placed a spiral on the screen with ‘in-place’
values that could be easily adjusted to create the
desired image. This example demonstrates the types
of decisions made during development of the
interface and how difficult and important it is to get it
right, as the software either succeeds or fails based on
these decisions.

From a development point of view, these user
stories were instrumental in both helping to reduce
user frustration and fix garden-variety software
‘bugs’. The narrow line of frustration versus
challenge is not always easy to see, and frequently
can only be seen through the eyes of a user. Users
typically don’t have the familiarity with software that
a developer does, and this developer familiarity often
leads to developer ‘blindness’. Examples of software
‘bugs’ that user experiences reveal can be
unexpected, from ‘the spiral generates in the wrong
direction’ to ‘the starting angle is off by 90 degrees’.
Theses types of things of course, are all a matter of
perspective and are likely to come to light through
the observations of someone that hasn’t been looking
at the software for many hours.

The author observing students working with the pCSDTs at the

Ayeduasi School, Kumasi Ghana.

Mental Models

The programmable Culturally Situated Design

Tools were born out of a desire to teach programming
skills to pre-college age students. Students would
interact with culturally situated objects that are
objects with cultural significance, in simulation. This
simulation environment would allow for the
combination of these basic cultural objects into more
complicated designs, in building block fashion. This
interaction would be within in a constructivist
environment (Mayer, 1996) that would have some
desirable artifact as an outcome.

The mental model that the student brings to the
pCSDT tool is their idea and understanding about
how building blocks should fit together to construct
larger objects. They also bring to the tool a
preconceived notion about how tools fit in a toolbox
and how they can be organized by function. Where
most graphical user interfaces in operating systems
have their design based on the desktop metaphor, the
pCSDTs have as their design base the ‘Toolbox’
metaphor.

The pCSDT user interface opens and reveals a
series of panels organized from left to right. The left
most panels contain tabbed panes that map directly to
the toolbox metaphor. Each tab in the panel contains
building blocks called codelets that are grouped by
function. Immediately to the right of the codelet
panel is the scripting pane, where the building block
codelets are assembled into small programs. The
output window then follows to the right of the
scripting panel and occupies the majority of the user
interface. The output panel is where all the action
happens as the user created script is executed. In
addition, there are two smaller panels underneath the
output pane, which list the objects that have been
created in the interface and the initial values (such as
location or color) for those objects.

The codelet panel has tabbed panes that are
color-coded and labeled ‘Event’, ’Method’,
‘Controls’, ‘Operators’, ‘Variables’, and ‘Sensing’.
Each panel contains codelets, the same color as the
label on the pane that performs particular functions.
The group of codelets within each pane all performs

The programmable Adinkra stamping simulation.

The software is running with three shapes on the screen, logarithmic spiral, linear spiral, and horizontal line.

similar functions within the scripting system. Similar
to a toolbox, a user accesses the appropriate panel
and drags the desired codelets into the scripting pane
and attaches the codelet to those already in the panel.
By assembling the codelet building blocks in a
particular order, the user writes a small program, the
result of which will be displayed on the output panel.

The green Events pane contains codelets that are
designed to respond to user interface events. For
example, the Events pane has a codelet entitled ‘On
Begin’ which responds to the User Interface (UI)
event of clicking the run button. Once a user clicks
on the run button in the UI, the event stack fires and
systematically works its way through all of the
objects currently created in the system. For each
object, the system finds the event ‘On Begin’ and
sequentially executes all of the codelets that are
attached to it. This systematic path through the event

stack creates a loop and updates the attributes of each
object and displays these updates in the output pane.

The blue Methods pane contains codelets that are
designed to set the attributes programmatically for
each object currently created in the system. The
method codelets expose these attributes to the user
and allows for those attributes to be altered during
script execution. As the event stack is processed after
the run button is clicked, and as each ‘On Begin’
codelet is located for each object, the methods
attached to the ‘On Begin’ codelet are executed in
sequence. This execution updates the system values
for each attribute in the codelet and then these
changes are reflected in the update to the output
window.

The orange Controls pane contains codelets that
allow the user to incorporate traditional programming
concepts such as looping for a fixed number of times,

forever, or while a condition holds true as well as
conditional execution. These control codelets allow
the user to alter the sequence of script execution just
as it is possible with a traditional programming
language. Here however, the user is altering the
onscreen behavior of the object in the output window.

The yellow Operators pane contains codelets that
allow the student to use relational operators to create
condition statements for the event stack to test for
conditional script execution during the execution
loop. These relational statements can incorporate
system variables such as object attributes listed in the
orange Sensing pane or user-defined variables
created in the pink Variables pane. The Sensing pane
lists object attributes that have their initial values set
through the Starting Values panel, and those initial
starting values are programmatically changed during
script execution through the use of the method
codelets.

The desired outcome for the user spending time
with a pCSDT is to learn new things in mathematics
and computer science. This learning amounts to the
extension of their existing mental model to
incorporate the tools that they used to construct their
onscreen artifact. A successful outcome will be one
in which the user extends their mental model of the
initial toolbox of the user interface to include the new
tools used in building the onscreen output. Based on
student interaction with for example, the ‘Repeat
While’ control codelet, they will have developed a
mental model that ‘If I construct a condition, the
codelets placed inside the ‘Repeat While’ will
execute only while that condition remains true, and
when that condition becomes false, the changes being
executed will stop. I will observe this start and stop
on screen in the output window’. The proper
graphical feedback then is crucial. It is based on this
feedback that the student will succeed in validating
their new extended mental model of how these
programming concepts work. If the UI responds in an
unexpected or incorrect way, the user will fail to
validate and thus acquire the new mental model and
will not learn the new concepts.

The success or failure of the student in learning
programming concepts such as the use of control
structures, variables, etc. requires that the designers
of the user interface walk a very fine line between

design that outright instructs and one that allows for
user exploration. This is the creative tension that we
as developers need to be careful to balance in this
type of educational software. If the tool is too
difficult, the student will become frustrated and give
up. If the tool is too easy, then the student will
become bored and will miss out on potential learning
opportunities. An additional strategy in this UI tuning
is to find ways to reduce the cognitive load the users
face from other interface elements.

Cognitive task loading

As stated previously, the developer of the tool

needs to walk the line between concealing the
complexity of the underlying software behind
codelets that do more, at the risk of reducing learning
opportunities for the user and possibly making the
tool boring to users. The alternative is to expose more
complexity in the underlying software by designing
codelets that do less, at the risk of increasing student
frustration with a design tool that has become much
more complicated to use. In addition to the level of
cognitive complexity that is chosen for the codelets,
there are additional ways to reduce cognitive
complexity to support user learning.

In the considerations that have been discussed
throughout our design efforts for the pCSDTs, the
most important has been to support the user in
whatever way we can, without diminishing the
opportunity for user learning. The user interface
design considerations that have helped in this support
has been the selective display of information, in
particular, the availability of codelets through the use
of panes, and by further limiting the display of
codelets to those belonging to the currently selected
object. This limitation of codelets reduces the
cognitive load for the student, which makes available
to them, only the current relevant codelets from
which they have to chose in constructing their
program script.

When the UI starts, it loads a default set of
objects and the scripts that have been created for that
set of objects. The scripts use codelets that are from
the Methods pane for each object. At this point, some
small demonstration program is available to be run,
getting the users ‘feet wet’ in how the tool works.

From here, the user can then customize the default
script, extending its functionality and thus extending
the output results in a desirable fashion in the output
pane. With the UI starting with an active object
selected, the method codelets available to use for that
object, and a small script made from those codelets,
the universe of possible scripts has been limited to a
much more readily understood starting point. Color-
coding for control, method, and event codelets easily
allow the user to identify which panel will contain
additional similar codelets, for use in extending the
script further.

 As the user gains familiarity with the scripting
panel and the already displayed codelets, the time
will come to expand the creation, and the student will
create additional objects. Each object is selectable
through the object listing and upon selection, relevant
codelets will populate the method pane for use in that
objects’ scripting panel. The user has already gained
familiarity with the method codelets and scripting
pane of the first object, and so starting work on
another object should feel comfortable to the user.
This familiarity reduces the cognitive challenge to
one of simply understanding the new codelets
presented that perhaps were not available in the first
object. In addition, familiarity at this level will
probably encourage the student to begin exploring the
control and operator codelets to create additional,
more interesting designs. This progressive disclosure
of codelets helps to reduce cognitive load by limiting
the interface elements that are visible to the user at
any one time, to only those elements that are relevant
to the task capable of being performed (Apple, 1992).

Another way the UI assists users through
reducing cognitive load is to provide on screen
scaffolding in the form of (possibly) familiar tools
such as Cartesian grids for object placement in the
output screen. When the pCSDT is not in the
‘running’ mode, a Cartesian grid appears over the
output, and all objects are returned to their initial
positions. This grid then allows users to more easily
see where in the plane their object should be placed
based on the ordered pair location possible within the
Cartesian grid. When the tool is in ‘running’ mode,
the grid is no longer drawn and thus does not appear
in the final output of the artifact.

An interesting way that the UI can be used to

create motivation in a student is to provide goal
images. True to reducing cognitive load, these images
need to be purposely selected before they appear in
their own separate window, but once they are
available, provide a valuable resource for the student
as they create their own design. Sometimes a student
does not have sufficient motivation to create a design
entirely on his or her own. However, a great deal can
be learned through reproducing a design. In addition
to the reproduction of the design, there can also be
the challenge of reproducing a design efficiently, or
more efficiently than a competitor. Team design can
result in a deeper understanding of the tool than just a
single person struggling through his or her own
efforts.

Using tutorials is another more typical way that
the UI can be used to assist in the reduction of stress
in the cognitive load of learning a new tool. Tutorials
can provide small toy scripts that behave in typical
ways to get the user started in building their own
designs, and can be used to communicate both basic
functions as well as more complicated scripting
techniques. Tutorials can be especially helpful when
the tool has exposed more of the complexity of the
underlying software to the user, thus helping to build
familiarity with the program. Seeing how those
codelets’ function within a tutorial can reduce user
stress and help users learn the codelets abilities more
quickly and effectively.

Future Work

The Culturally Situated Design Tools have come

a long way from where they began as small tools for
teaching mathematics. However, there are many
important areas that can still be explored, and I think
that HCI can help to show the way. Some of the most
exciting areas for the future development of CSDTs
would be the use of participatory design, tutorial
automation, and the creation of an online community.
In addition to these three areas of development, I
think that the tools could also benefit from a more
rigorous approach to usability testing, incorporating
HCI formalisms in task analysis and user feedback.

A very exciting approach to design and
development of future tools could incorporate
participatory design, where users interact with

developers on a regular basis resulting in the
development direction being set by the users (Muller,
2008). User participation could be very helpful in the
development process, because it would then have a
group of users with a vested interest in the selection
and outcome of design decisions. This highly
interested and invested user group would bring many
assets to the development process. A developer
would immediately benefit from understanding these
users mental models of the software that would
inform the design process. In addition, the tool would
have a ready and willing beta testing community.

I have had the good fortune of being able to
interact with some wonderful crafts people while
developing the Adinkra stamping simulation. I have
been able to collect ethnographic information about
Adinkra in Ghana, return home to the US and work
on the software application, and then present a
version of that tool back to the craftsperson whose
help was so invaluable. Gabriel (Adinkra stamping)
was able to further my understanding by pointing out
subtle differences in my simulation to his practice of
the craft. However, that back and forth took two
years to accomplish and it still strikes me as how
much better the process would have been if I could
share my development iterations in something closer
to real time.

We could also extend this model of participatory
design to include student users and interested young
people (Bruckman et. al, 2008). In my opinion,
incorporating young students in the software design,
as design partners would be a complete paradigm
shift as far as the current CSDT development process
is concerned, but it remains a great source of
excitement for possible future directions. Allowing
for such partnerships necessarily means surrender of
some control over some design decisions, which
might be scary at first, but could yield worthwhile
results.

Tutorials offer a way to create a sense of
familiarity in users that are new to the software. This
sense of familiarity equates to the extension of a
users mental model, to include whatever new ideas
that are involved (Sutcliffe, 2008). Current CSDT
tutorials are somewhat static in their design and can
be limited to the presentation of a demonstration
script for the user to study, or else a goal image for

the user to attempt to duplicate. This limited
approach could be so much more exciting to the user
if it offered automation and interactivity, allowing for
user direction of the outcome on the screen.

An exciting alternative might be to automate the
‘getting familiar’ tutorial experience through the use
of JavaScript. For example, a tutorial page might
open and the JavaScript could simultaneously access
the underlying pCSDT application in the background.
As the user explores the tutorial and makes changes
in the simulation environment, those changes could
respond in real time through the use of the JavaScript
code. Rather than simply exploring the pCSDT
application through the use of its scripting interface,
JavaScript would allow for this exploration to be
more guided and smaller in scope. The user could be
more closely guided to build on each small success in
their understanding of the interface, rather than rely
on just the visual feedback produced when clicking
the ‘run’ button.

This new framework could break down the
challenge of building a script in to bite sized chunks,
with immediate feedback on success or failure. This
framework could also be extended to ‘game-ify’ the
learning process by creating challenges through the
use of scenarios (Rosson, Carroll, 2008) or time
limited tasks. Advances in effective tutorial design
could really improve learning outcomes.

Finally, as the user base for the Culturally
Situated Design Tools grows, incorporating an online
community seems to be the next step in the
evolutionary process for the tools. An online
community would provide a sense of social presence
to software users, allowing them to interact with
other users of the tools (Zaphiris et. al, 2008). This
community would offer a venue for users to
showcase the designs that they have created in the
form of both jpeg picture files and user programs
created within the pCSDT tools. The picture files
present the outcome of running the program that the
user has created and the user programs would allow
other users to download the programs that created the
pictures. Both the jpeg pictures and the programs
would offer the opportunity for users to give and
receive feedback on their creations.

In addition to social presence and feedback, an
online community would allow for the development

of a learning community based around the use of the
tools. This learning community can become a
knowledge base of support to users of the tools as
they seek to become more proficient in their
programming skills. This learning community could
also be a source of ideas for software improvement
and extension in the wider development effort.

Regardless of the specific directions that the
development of the CSDTs take in the future, HCI
offers a wealth of formalisms in task analysis
(Courage et. al, 2008) and user feedback (Kuniavsky,
2008) that would help to inform development and
design decisions. Formal task analysis would seek to
define user tasks within the software and then seek to
determine the best way to perform those tasks.
Different strategies for task completion could then be
developed and presented to users to determine which
strategy was more intuitive or proved less frustrating
to users. Formal methods of user feedback could be
built around ongoing user surveys, perhaps delivered
through the software interface or else the software
website. Gathering feedback on an ongoing basis
would provide a growing body of user opinions for
statistical analysis, rather than gathering information
from user around a particular question at a particular
point in time.

Conclusion

My analysis of the programmable Culturally

Situated Design Tools from an HCI point of view has
focused on ethnographic design, mental models and
cognitive task loading. These three areas reflect only
a small subset of possible analysis offered by HCI
thinking. The ethnographic design principles used
with the pCSDTs reflect a two track approach, the
first being with ethnographic stories concerning the
craft being simulated and the second being user
stories with the simulation. Mental models offer a
way of understanding how users think of the software
being used and how the software can help to extend
the users mental models, which we otherwise would
describe as learning. Finally, cognitive task loading
helps us think about how the complexity of the
software presented to a user can either help or hinder
learning outcomes.

I look forward to continuing my work with the
Culturally Situated Design Tools in the future. I feel
privileged to have been involved in this project. The
CSDTs offer a rich medium to study both software
design and the underlying crafts that the software
seeks to simulate. They can focus both on the user
and user-learning outcomes as well as crafts people
and their crafts. In addition, they offer a rich medium
to understand developers and the development
process. Thus, the CSDTs are limited only to the
extent of our imaginations.

References

Apple. Macintosh Human Interface Guidelines.
Addison-Wesley Publishing Company, 1992.

Ashman, A. H., Brailsford, T., Burnett, G., Goulding,

J., Moore, A., Stewart, C., & Truran, M. (2008).
HCI and the web. In A. Sears & J. A. Jacko
(Eds.), The human-computer interaction
handbook : Fundamentals, evolving
technologies, and emerging applications (pp.
559-571). New York: Lawrence Erlbaum Assoc.

Blomberg, J., & Burrell, M., Guest, Greg (2003). An

ethnographic approach to design. In A. Sears &
J. A. Jacko (Eds.), The human-computer
interaction handbook : Fundamentals, evolving
technologies, and emerging applications (pp.
964-986). New York: Lawrence Erlbaum Assoc.

Bruckman, A., Bandlow, A., & Forte, A. (2008). HCI

for kids. In A. Sears & J. A. Jacko (Eds.), The
human-computer interaction handbook :
Fundamentals, evolving technologies, and
emerging applications (pp. 793-806). New
York: Lawrence Erlbaum Assoc.

Byrne, S. J. (2008). Cognitive architecture. In A.

Sears & J. A. Jacko (Eds.), The human-computer
interaction handbook : Fundamentals, evolving
technologies, and emerging applications (pp.
94-111). New York: Lawrence Erlbaum Assoc.

Cooper, J., & Kugler, M. B. (2008). The digital

divide: The role of gender in human computer
interaction. In A. Sears & J. A. Jacko (Eds.), The
human-computer interaction handbook :
Fundamentals, evolving technologies, and
emerging applications (pp. 763-773). New
York: Lawrence Erlbaum Assoc.

Courage, C., Redish, J., Wixon, D. (2008). Task

analysis. In A. Sears & J. A. Jacko (Eds.), The
human-computer interaction handbook :
Fundamentals, evolving technologies, and
emerging applications (pp. 927-934). New
York: Lawrence Erlbaum Assoc.

Dumas, J. S., & Fox, J. E. (2008). Usability testing:

Current practice and future directions. In A.
Sears & J. A. Jacko (Eds.), The human-computer
interaction handbook : Fundamentals, evolving
technologies, and emerging applications (pp.

1129-1143). New York: Lawrence Erlbaum
Assoc.

Holtzblatt, K. (2008). Contextual design. In A. Sears

& J. A. Jacko (Eds.), The human-computer
interaction handbook : Fundamentals, evolving
technologies, and emerging applications (pp.
949-963). New York: Lawrence Erlbaum Assoc.

Kuniavsky, M. (2008). User experience and HCI. In

A. Sears & J. A. Jacko (Eds.), The human-
computer interaction handbook : Fundamentals,
evolving technologies, and emerging
applications (pp. 897-915). New York:
Lawrence Erlbaum Assoc.

Lazzaro, N. (2008). Why we play: Affect and the fun

of games, designing emotions for games,
entertainment interfaces and interactive
products. In A. Sears & J. A. Jacko (Eds.), The
human-computer interaction handbook :
Fundamentals, evolving technologies, and
emerging applications (pp. 679-701). New
York: Lawrence Erlbaum Assoc.

Muller, M. J. (2008). Participatory design: The third

space in HCI. In A. Sears & J. A. Jacko (Eds.),
The human-computer interaction handbook :
Fundamentals, evolving technologies, and
emerging applications (pp. 1061-1077). New
York: Lawrence Erlbaum Assoc.

Marcus, M. A. (2008). Global/intercultural user

interface design. In A. Sears & J. A. Jacko
(Eds.), The human-computer interaction
handbook : Fundamentals, evolving
technologies, and emerging applications (pp.
355-377). New York: Lawrence Erlbaum Assoc.

Pagulayan, R. J., Keeker, K., Fuller, T., Wixon, D., &

Romero, R. L. (2008). User centered design in
games. In A. Sears & J. A. Jacko (Eds.), The
human-computer interaction handbook :
Fundamentals, evolving technologies, and
emerging applications (pp. 741-758). New
York: Lawrence Erlbaum Assoc.

Payne, S. J. (2008). Mental models in human-

computer interaction. In A. Sears & J. A. Jacko
(Eds.), The human-computer interaction
handbook : Fundamentals, evolving
technologies, and emerging applications (pp.
64-74). New York: Lawrence Erlbaum Assoc.

Rosson, Mary Beth, Carroll, John M. (2008).

Scenario Based Design. In A. Sears & J. A.

Jacko (Eds.), The human-computer interaction
handbook : Fundamentals, evolving
technologies, and emerging applications (pp.
1041-1057). New York: Lawrence Erlbaum
Assoc.

Sutcliffe, A. (2008). Multimedia User Interface

Design. In A. Sears & J. A. Jacko (Eds.), The
human-computer interaction handbook :
Fundamentals, evolving technologies, and
emerging applications (pp. 393-411). New
York: Lawrence Erlbaum Assoc.

Watzman, W. J., & Re, M. (2008). Visual design

principles for usable interfaces everything is
designed: Why we should think before doing. In
A. Sears & J. A. Jacko (Eds.), The human-
computer interaction handbook : Fundamentals,
evolving technologies, and emerging
applications (pp. 329-340). New York:
Lawrence Erlbaum Assoc.

Zaphiris, P., Ang, C. S., Laghos, A. (2008). Online

communities. In A. Sears & J. A. Jacko (Eds.),
The human-computer interaction handbook :
Fundamentals, evolving technologies, and
emerging applications (pp. 603-618). New
York: Lawrence Erlbaum Assoc.

