
Ethnocomputing: the Design and Assessment of Culture-Based Learning
Software for Math and Computing Education.

By

William Edgar Babbitt

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

In Partial Fulfillment of the

Requirements for the degree of

DOCTOR OF PHILOSOPHY

Major Subject: Multidisciplinary Science

Approved by the
Examining Committee:

Dr. Ron Eglash, Thesis Adviser

Dr. Mukkai Krishnamoorthy, Thesis Adviser

Dr. Audrey Bennett, Member

Dr. Bruce Piper, Member

Dr. David Spooner, Member

Rensselaer Polytechnic Institute
Troy, New York
November 2014

(For Graduation December 2014)

CONTENTS

LIST OF TABLES ... iv
LIST OF FIGURES .. v
ACKNOWLEDGMENT... vii
ABSTRACT ... ix
1. INTRODUCTION .. 1

1.1 STEM and Underrepresentation ... 2
1.2 Myths of Cultural and Genetic Determinism .. 5
1.3 Research Questions ... 7
1.4 Cultural Capital ... 8
1.5 Measuring Success in Computational Thinking ... 9
1.6 Software Development.. 10
1.7 Content Agnostic Position .. 11
1.8 Conclusion .. 12

2. WHY ETHNOCOMPUTING? .. 13
2.1 Introduction ... 13
2.2 Ethnomathematics ... 14
2.3 Ethnomathematics to Ethnocomputing ... 16
2.4 From CSDTs to pCSDTs .. 17
2.5 Domains of Interaction in the Classroom ... 21
2.6 Inquiry Learning ... 24
2.7 Ethnocomputing: Kente cloth ... 25

2.7.1 The History of Kente Cloth .. 25
2.7.2 Kente Cloth pCSDT ... 26

2.8 Ethnocomputing: Adinkra Stamping .. 27
2.8.1 The History of Adinkra Stamping.. 27
2.8.2 Adinkra Stamping pCSDT ... 28

2.9 Conclusion .. 28
3. SOFTWARE DEVELOPMENT AND HCI ... 30

3.1 Introduction ... 30
3.2 Software Development.. 32

3.2.1 The Programmable Culturally Situated Design Tools 33
3.2.2 The pCSDT Architecture ... 37
3.2.3 The pCSDT User Interface .. 39
3.2.4 Cornrow Curves Simulation .. 41
3.2.5 Kente Cloth Simulation.. 44
3.2.6 Adinkra Simulation .. 46

3.3 Human Computer Interaction and the pCSDTs .. 49
3.3.1 Mental Models ... 50
3.3.2 Cognitive Loading ... 51

3.4 Ethnographic Studies .. 54
3.4.1 Case Study: Adinkra Stamping .. 54
3.4.2 Case Study: Kente Cloth Simulation ... 55

3.5 Conclusion .. 58

 ii

4. CONTENT AGNOSTIC POSITION ... 59
4.1 Introduction ... 59
4.2 Potential Disadvantage to the Content Agnostic Position: Four Categories 61

4.2.1 Use of Inappropriate Material .. 61
4.2.2 Tendency to Gravitate Towards Violent Video Game Formats 61
4.2.3 Tendency to Gravitate Towards Commercial Content in General................... 63
4.2.4 Differential of Computational Complexity between Commercially and Non-
Commercially Engaged Projects ... 65

4.3 Constructionism and Contextualism as Orthogonal Dimensions 66
4.4 Content-Aware Learning: Examples from Culture-Based and Social Justice Based
Math Education ... 71
4.5 Content-Aware Constructionist Learning in Computer Science Education 77
4.6 Conclusion .. 84

5. FORMATIVE DATA ANALYSIS ... 86
5.1 Introduction ... 86
5.2 The Use of Ethnography ... 87
5.3 Ethnographic User Stories .. 88

5.3.1 Cornrow Curves Simulation with Two Students ... 89
5.3.2 Kente Cloth Weaving Simulation with a Class.. 92

5.4 Ethnographic Developer Stories ... 94
5.4.1 Kente Cloth .. 94
5.4.2 Adinkra Stamping .. 96

5.5 Conclusion .. 100
6. SUMMATIVE DATA ANALYSIS ... 101

6.1 Introduction ... 101
6.2 Ghanaian Adinkra Symbols and Logarithmic Spirals .. 101
6.3 Experiment Overview ... 105
6.4 Control Group Lesson ... 106

6.4.1 Class Period Overview ... 106
6.4.2 Class Period Narrative ... 107

6.5 Intervention Group Lesson ... 110
6.5.1 Class Period Overview ... 110
6.5.2 Class Period Narrative ... 111

6.6 Results ... 119
6.7 Conclusion .. 120

7. CONCLUSION ... 121
7.1 Contributions to Science ... 121
7.2 Contributions to Society ... 123

References ... 125
Appendix 1 Culture vs. Non-Culture Pre/Post Test .. 136

 iii

LIST OF TABLES

Table 3.1: Agile Manifesto [57] .. 32

 iv

LIST OF FIGURES

Figure 2.1: Adobe Flash version of the CSDT for cornrow hairstyles 17
Figure 2.2: Programmable Culturally Situated Design Tool for cornrows 19
Figure 2.3: Simulated braid with alternating colors.. 21
Figure 2.4: Three domains in ethnocomputing ... 23
Figure 2.5: Ohene Anewa [50].. 26
Figure 2.6: Nkyimkyim [50] ... 26
Figure 2.7: Afa [50] .. 26
Figure 2.8: Dwennimen .. 28
Figure 2.9: Akoko Nan ... 28
Figure 2.10: Sankofa ... 28

Figure 3.1: The Virtual Beadloom CSDT ... 36
Figure 3.2: CSnap interface with the Akoma project loaded .. 37
Figure 3.3: The Cornrow Curves simulation .. 39
Figure 3.4: Early version of Cornrow Curves simulation ... 42
Figure 3.5: Final version of the Cornrow Curves simulation ... 43
Figure 3.7: Early version of the Kente Cloth simulation .. 45
Figure 3.8: The final version of the Kente Cloth simulation .. 46
Figure 3.9: Early version of the Adinkra stamping simulation ... 48
Figure 3.10: The final version of the Adinkra stamping simulation 49

Figure 4.1: First person shooter projects in Scratch ... 62
Figure 4.2: Additional projects from Scratch users .. 63
Figure 4.3: Two orthogonal dimensions ... 67
Figure 4.4: Simulation by Navajo student showing use of traditional motifs 81
Figure 4.5: "Jamaican Summer Nights" .. 82
Figure 4.6: "Clash of Civilizations" .. 83

Figure 5.1: Adinkra stamping pCSDT logarithmic spiral example 98
Figure 5.2: Adinkra stamping pCSDT screenshot .. 99

Figure 6.1: Dwennimen .. 102
Figure 6.2: Akoko nan .. 102
Figure 6.3: Sankofa ... 102
Figure 6.4: Gye Nyame: "no one except for God" .. 103
Figure 6.5: Logarithmic curve and Sankofa, left; Sankofa symbol with different coilness,
middle and right .. 104
Figure 6.6: GeoGebra log spiral application ... 109
Figure 6.7: The Cartesian plane, left; Kronti Ne Akwamu Adinkra symbol, right. 112
Figure 6.8: CSnap interface with Akoma script running .. 113
Figure 6.9: Dwennimen Adinkra symbol.. 115
Figure 6.10: Dwennimen .. 116
Figure 6.11: Akoko nan .. 116

 v

Figure 6.12: Sankofa ... 116
Figure 6.13: CSnap interface with the 'Confused Dwennimen' design challenge 116
Figure 6.14: CSnap interface with the Dwennimen challenge, completed 117
Figure 6.15: CSnap interface with the Mpuannum challenge ... 118
Figure 6.16: CSnap interface with the Mpuannum challenge, completed 118

 vi

ACKNOWLEDGMENT

 There have been so many people that have helped to further this work over the

past 4 years; it is very likely that I might inadvertently leave someone out of this heartfelt

thank you. Please know that if I do accidently fail to include you – I apologize in

advance, and that your efforts on my behalf were greatly appreciated at the time as well

as now.

 First, I would like to thank my family. My wife Nancy of almost 20 years and my

sons Matthew and Joshua have had me in their lives a lot less since I started this project.

Once this work is complete, I will need to begin to repay them the debt of time that they

are owed.

 I would like to extend a heartfelt thank you to my advisers, Professors Ron

Eglash, and Mukkai Krishnamoorthy. If it were not for Moorthy, I would never have

applied to RPI and without Ron, there would not have been an opportunity for me to

apply to. Both have been so generous with their time and patience, for which I am truly

grateful.

 I am also tremendously grateful to my committee, in addition to Moorthy and

Ron, Dr. Audrey Bennett, Dr. Bruce Piper, and Dr. David Spooner. Their patience and

understanding as this project has evolved over the past year has been very much

appreciated.

 I would also like to extend a thank you to Dr. Mary O’Keeffe. Mary has been a

longtime friend to me and my family; she has inspired me to be the best that I can be,

through her example. Mary and Moorthy are advisers to the Albany Area Math Circle,

and they both have been a source of inspiration to me.

 I would like to say a heartfelt thank you to Dan Lyles and Simon Ellis. Dan and I

entered RPI as GK-12 fellows at the same time, and collaborated on numerous projects,

conference presentations, and middle school activities. Simon has been a reliable friend,

study partner, and sounding board through numerous computer science classes and all of

my projects while at RPI.

 I would especially like to thank all of my Ghanaian research partners. Without

Mr. Gabriel Boakye, my Adinkra expert, and Mr. Richard Bonsu, my Kente Cloth expert,

 vii

this work would not have been possible. I would also like to thank Mr. Enoch Bulley, our

research collaborator at the Ayeduase Junior High School in Kumasi. Without Enoch’s

invaluable assistance over the years, many projects would not have been possible.

 I would also like to thank Linda Carey, science teacher at Hackett Middle School,

in Albany, New York. Linda’s willingness to stay after school and try new and interesting

teaching methods with her science club students made a great deal of this research

possible.

 Michael Lachney has been a research partner and friend through most of this

work. We traveled to Ghana together during the summer of 2014, providing support to

each other’s work while there, as we faced many challenges. We endured, together,

through work challenges, armed robbery challenges, Ghana National Police challenges,

and the resulting trauma and aftermath challenges, all with our usual good humor and

camaraderie. Thank you, Michael.

 On the subject of our Ghana challenges, I would like to express a heartfelt thank

you to President Jackson and Provost Hajela of RPI, as well as the administration of

KNUST for their expert handling of our armed robbery and its aftermath during our stay

in Ghana. They, as a group, collectively ‘picked us up, and dusted us off’, and helped us

complete as much of our planned research as possible.

 I would also like to extend a thank you to the National Science Foundation’s GK-

12 program, Rensselaer Polytechnic Institute, and my many donors. NSF GK-12

generously funded my first two years of graduate work at RPI, along with my first two

research trips to Ghana in 2011 and 2012. I received RPI TA support for the 2 ½ years

following the NSF support. My third trip to Ghana in the summer of 2014 received

crowd-sourced donation support through an effort conducted via ‘gofundme.com’.

 viii

ABSTRACT

 The United States has a serious problem in Science, Technology, Engineering,

and Mathematics. The STEM disciplines are suffering from a ‘Quiet Crisis’[1]. The

problem is that African Americans, Latino/a, Native American, and other ethnic minority

students are choosing careers in the STEM disciplines at lower percentages than their

white and Asian counterparts [2]. We refer to this disparity as underrepresentation. This

work focuses on the use of the Culturally Situated Design Tools (CSDTs,

http://csdt.rpi.edu) as a means to counter this underrepresentation. The programmable set

of CSDTs represents the development of this software from being focused on

ethnomathematics, to ethnocomputing. Ethnocomputing is the reproduction of cultural

artifacts in simulation. The CSDTs are part of the constructionist genre of programmable

software that seeks to teach computer science concepts to students as they construct these

cultural artifacts. Development work on the programmable CSDT software has provided

the opportunity to examine the challenges that occur in cross cultural software

development using the Agile method. This work includes ethnographic user and

developer stories that have informed the development of the pCSDT software. Among

the challenges of developing this software has been negotiating the controversy of what

we have come to term “The Content Agnostic Position”. This is the notion that all

software with objects in simulation, regardless of what those objects are, possesses equal

value in teaching students. This position, however, often results in the commercial or

violent colonization of user spaces by corporate produced media objects and simulated

gun violence. It is our view that this colonization can be diminished through the use of

cultural objects in simulation, such as those found in the CSDTs. Our work is intended to

create a decolonized space for mathematics and computing education. This work also

reports the findings of a quasi-experiment conducted with junior high school students in

Kumasi, Ghana, West Africa during the summer of 2014.

 ix

http://csdt.rpi.edu/

1. INTRODUCTION

This dissertation examines the educational potential of ‘ethnocomputing’—a body

of research that examines the math and computing ideas and practices embedded in

cultural activities. By developing simulations of these cultural practices in the form of

pedagogical design tools, we can create new opportunities to better engage

underrepresented students. In the context of the United States, ‘underrepresented’ refers

to African American, Latino, and Indigenous (Native American, Native Alaskan, and

Pacific Islander) communities. These groups have relatively poor quality of life indicators

in almost every metric: lower income, lower life expectancy, and higher rates of teen

pregnancy, incarceration, and so on. Their lower rates of participation in Science,

Technology, Engineering, and Mathematics (STEM) careers are both a symptom and

contributing factor of this disparity. In addition to humanitarian concerns, there are

negative consequences to the US economy; so much so that the problem has been

referred to as the 'Quiet Crisis' [1]. Research presented in this dissertation indicates that

an ethnocomputing approach to education may not only offer the possibility of

improvement in underrepresented student STEM performance and interest, but also offer

advantages for all students—internationally as well as in the US—in what we have

termed the ‘content aware’ approach to constructionist pedagogy.

Regarding the specific case of U.S. underrepresented students, it should be noted

that some of the causes of this underrepresentation are beyond our control as designers of

pedagogical tools. Lack of resources for inner city schools, poor choices in diet and

nutrition, and urban gang violence are well beyond our control. However, the

ethnocomputing approach can directly address other factors. The role of the myths of

biological determinism and cultural determinism—as I will detail in chapters 1 and 2—

fall well within our reach. Similarly, poor pedagogical techniques resulting from

‘instructionist’ or ‘drill and kill’ approaches can be replaced by ethnocomputing’s

constructionist alternatives, supporting inquiry or discovery learning, as described in

chapter 3. It is this combination of a culturally situated understanding and a conceptually

open media that makes ethnocomputing uniquely suited to address these social issues. As

 1

we will see, prior work described in the ‘culturally relevant’ teaching literature tends to

use instructionist approaches. When these are replaced with constructionist methods,

culture tends to drop out, and this 'content agnostic' approach often allows for a

‘colonization’ of learning spaces with corporate commodities—hence the ubiquity of

projects in Scratch and similar platforms based on Barbie, Halo 3, McDonalds, and other

commercial enterprises, as we will see in chapter 4.

Chapters 5 and 6 describe our efforts to develop and evaluate a ‘content aware’

alternative to ‘content agnostic’: one that combines the ‘openness’ of general

programming platforms with the cultural specificity informed by research in

ethnomathematics and ethnocomputing. In the academic world, math and computing are

neatly separated into disciplines, courses and journals, but of course, the real world

makes no such distinction. Modeling the formal systems underlying cultural designs—

textiles, artistic practices, adornment, and so on—requires both forms of analysis.

Understanding the interior cognitive world of these artisans, translating that via HCI

principles into an interface that satisfies both children’s learning needs and teacher’s

curricular demands, and evaluating the results with both quantitative and qualitative

assessments, requires additional synthesis from disciplines such as psychology,

anthropology, and science and technology studies, as well. Despite these complexities, I

believe the data shows that the form of ethnocomputing pedagogy that we have

introduced through our Culturally Situated Design Tools (CSDTs) brings culturally

specific advantages for U.S. underrepresented groups, they address the problem of the

‘commodification’ of learning for U.S. majority groups, and they even show promise

internationally as evidenced by our field work in West Africa.

1.1 STEM and Underrepresentation
As noted above, the lower rates of STEM participation by African American,

Latino/a and other groups in the US has both humanitarian and utilitarian dimensions. In

terms of its humanitarian outlook, the situation has parallels with the civil rights era of

the 1960s, where activists protested the lack of voting rights for legal citizenship. In our

era, the problem is a lack of ‘technological citizenship’. Just as one cannot exercise their

full rights as citizens without the vote, one cannot participate fully in a highly

technologized world without sufficient STEM education, regardless of profession.

 2

Avoidance of STEM fields of study can contribute to the lower rates of income in these

communities. One of the most important decisions a young person can make is their

choice of career. Adult lifetime earnings potential, and quality of life as determined by

socioeconomic status will have largely been determined, once a student settles on a career

choice, presuming the student stays within that field of choice.

In terms of the utilitarian employment outlook, underrepresentation of African

Americans, Latinos, and others—along with women of all ethnicities—has a profound

effect on the U.S. labor pool, by reducing the available candidates for STEM

employment. In addition, scholars such as Joseph Graves [3] have pointed to connections

between poor STEM education and higher teen pregnancy rates, higher rates of HIV

transmission, and other health problems in the African American community. Thus, when

we consider the effects of portions of the US population choosing to avoid STEM

careers, it becomes clear that the cost of doing nothing in motivating and training

students to be successful in STEM careers is just too high. As Jackson observes, to

address this shortfall, we must be able to recruit STEM trained employees from the entire

population [1]. It is vital to the economic interests of the United States that all U.S.

students view the STEM fields as desirable and attainable career options.

When asked about career plans, underrepresented students often state their

ambition in sports or entertainment. While it is true there are a few highly paid sports and

entertainment professionals, the sad fact is that students aspiring to these careers are far

more likely to fail in their chosen profession than succeed, as very few positions are

available as a star athlete or entertainer. Moreover, these ambitions are used to justify

neglecting one’s academic success.

On the other hand, for a student that sees a STEM field of study as a viable career

choice, the impact on poverty can be profound. Choosing STEM greatly increases the

lifetime earnings potential of the student, which in turn effects family members and

significant others that are connected to that student. A STEM choice would have a

positive impact in alleviating a cycle of poverty that so many underrepresented students

experience.

Succeeding at countering STEM avoidance in career preparation and aspiration

would yield benefits that would extend beyond the individual STEM professional.

 3

Students choosing STEM receive training in the Scientific Method, which would have a

positive effect on those around them. These professionals would form the basis for a

community that is both STEM informed and STEM confident.

Trained professionals, as STEM role models, can transform the wider community.

This modeling of the benefits of a STEM education would encourage others to reconsider

their own STEM options. As the community grows in its STEM inclusiveness, benefits

would extend beyond the effects of educational role models. This expansion could have

positive impacts on reducing the rates of teen pregnancy, which frequently robs young

women of their ability to complete an education by adding overwhelming family

responsibilities to their already difficult lives [3].

A STEM inclusive community may also have lower rates of HIV infection,

through its knowledge of the causes of that disease, and the risks of unprotected sexual

activity. Knowing the causes and risk factors of HIV would encourage young people to

stand up against peer pressure to engage in those risky behaviors. STEM awareness

would also assist health care professionals in guiding patients to make healthier lifestyle

choices. In addition, STEM awareness would result in higher vaccination rates, which

would increase positive health outcomes in all age groups.

Choosing to work in a STEM related field could also reverse internalized

pathologies resulting in a healthy self-identity. This positive self-identity would be

derived from the esteem of pursuing a successful career in a high value, high demand

field, being a positive role model in the community, and experiencing the financial

reward of high paying employment. A STEM career would, therefore, result in a

producing lifestyle instead of a consuming lifestyle.

It is clear that our society needs to be able to recruit STEM professionals from all

ethnic groups, not just white and Asian students. It is also clear that those students who

choose STEM careers have a positive effect on their communities in addition to the

personal benefit that they receive from the STEM choice. The causes of

underrepresentation can be complicated and are different for each individual, with many

causes being out of our reach. There are some causes of underrepresentation, however,

that are uniformly pernicious and within our ability to address, such as the myths of

genetic and cultural determinism.

 4

1.2 Myths of Cultural and Genetic Determinism

The myth of genetic determinism is the roundly debunked notion that one's racial

genetics—that is the genetic component specific to a geographic ancestral group such as

African or Native American—predetermines a person’s ability to succeed. Race has little

genetic basis: humanity arose relatively recently as a single species in Africa and its

genetically geographic adaptations such as skin color are even more recent. One recent

study [4] shows that white skin did not arise in Europeans until about 7,000 years ago.

Thus, what we think of as deep genetic differences are, in fact, a trivial component of our

otherwise nearly identical genome [5]. Unfortunately, the concept continues as a way to

classify and sort people: who are the most intelligent, most spiritual, and most human,

and which race is best, and which is not. The ideas and definitions related to the terms of

race and racism have evolved and changed over time. Far from a science that predicts

human intelligence based on DNA, the racial myths of genetic determinism are a means

to exert economic and political power of one group over another [6].

The myth of cultural determinism is the idea that ‘authentic’ participation in a

culture prohibits certain activities. For underrepresented youth, this can have a negative

impact on educational motivations: if there is peer pressure to see academic success as

being a ‘sell out’ then academic failure is ‘keepin’ it real’. With African American

students, this often plays out as an accusation of ‘acting white’ [7]. Fordham [8] and

Ogbu [7] document the ways some African American students experience a perceived

expectation among their peers to choose between their black identity and high academic

achievement. Fryer and Torelli [9] found statistical evidence supporting the contention

that high-achieving African American students can be, and often are accused of “acting

white” by their peer group. When young students internalize cultural determinism, it acts

in much the same way as this negative peer pressure, diminishing their educational

potential.

Just like cultural determinism, the results of genetic determinism are at their worst

when young students internalize these ideas. This internalization results in a ‘self-

fulfilling prophecy’ that serves to limit achievement, placing the study of certain

academic subjects out of the students reach [10]. Expressions such as ‘I’m not good at

math because I don’t have the math gene’ or ‘I’m not good at science because my parents

 5

aren’t good at science’, demonstrate how insidious these fallacies can be. All of these

attitudes play directly into the social construct of race that serves only to control and limit

opportunity for those in oppressed ethnic groups.

The control structure that is race leads to the disparate treatment of people of

different races, which we refer to as racism. Not surprisingly, different groups define the

term racism differently, determined by their experiences. Many white people understand

the term racism to be referring to the prejudice of a single individual, based on ideas and

feelings of dislike or hatred, while non-whites often have a better grasp of its social

dimensions, as an institutional feature of society where the dominant group (whites)

maintain a position of privilege and advantage over non-whites [11].

Institutionalized and systemic racism permits the maintenance of white privilege,

visible to non-whites in many ways in their everyday lives, but often invisible to whites.

This system of white privilege is especially evident in the values communicated to non-

whites in the educational system. The experience for non-whites as they receive their

education in schools indicates to them that what they perceive to be their group identity is

inferior to others [12].

There is a correlation between race and IQ, and therefore, race can be a predictor

of IQ scores as well as the likelihood of academic success; however, this is due to the

social and economic consequences of systemic racism and its consequent historical

harms, and not any genetic effects. For example, the low IQ scores of Jewish immigrants

in the 1920s were due to their lack of familiarity with the U.S. language and customs

[33]. IQ scores and intelligence testing, in general, are not reliable measures of student’s

ability, but rather they are a measure of the experiences their economic status in society

has allowed them to purchase. As a consequence of the Flynn effect [13], black IQ scores

have risen an average of three points per decade since 1930; they are now well above the

white average from that era [14]. East Germans and West Germans are genetically

indistinguishable, but their IQs were dramatically different until reunification [15].

In conclusion, while race and culture are not inherent barriers for

underrepresented students, the lingering myths reinforce the barriers keep

underrepresented students from higher academic achievement. Ethnocomputing offers a

means to oppose these myths, transforming culture from barrier to bridge.

 6

1.3 Research Questions

 Prior work in ethnomathematics and ethnocomputing shows strong potential to

counter the myths of biological and cultural determinism. Traditional practices (e.g.,

weaving, beading, sculpture, tattoo, drumming, and graffiti) show mathematical concepts

such as Cartesian and polar coordinates and transformational geometry, and

computational practices such as iteration and conditionals. Creating educational software

that allows students to utilize these simulations in order to understand this traditional

knowledge and then translate it into contemporary classroom skills had already achieved

some initial success before I began my dissertation. However, the reality of creating this

transformation from indigenous knowledge to classroom software is fraught with

complexities, and these complexities are what informed my research questions:

1) Modeling the formal systems that underlie cultural designs (e.g., textiles, artistic

practices, adornment, and so on) cannot be accomplished simply by analysis as an

outsider. Developing methods for interviewing artisans and understanding their

interior cognitive world are major areas of investigation in this work.

2) Once we have those formal models, translating that into a user-friendly interface

constitutes a second area of investigation. This is not simply a matter of applying

known HCI principles, since it must satisfy both children’s learning needs and

teachers’ curricular demands, and at some level still have sufficient fidelity to the

artisan’s internal cognitive model. Another issue is that the software has to exist

within the schools’ technological ecosystem of computing machines and

networks: security restrictions and obsolete equipment can often prevent

otherwise optimal solutions.

3) Locking down the design tools in order to allow only a limited set of ‘authentic’

cultural productions is one extreme I wanted to avoid. However making it too

‘content agnostic’ invites the kind of commercial colonization that we show in the

Scratch community in chapter 4. Thus, another area of inquiry involved finding

the right balance between these two extremes. This came in the form of

 7

‘programmable’ CSDTs, (“pCSDTs”), which was my major contribution as a

developer on this project.

4) Formative feedback informed a gradual evolution in the interface design through

an “Agile” model of iterative development.

5) Summative evaluation was used as a final check on the viability of the software in

meeting our goals of improving the math and computing performance and interest

of underrepresented students, as well as for students in a ‘postcolonial’ site in

West Africa.

These five areas of research defined the scope of investigation for this dissertation.

1.4 Cultural Capital

If cultural practices are to be incorporated into educational software, we need to

consider ways to investigate the changing value of those practices as they move across

different media, the ‘ownership’ of them, their varying levels of authenticity depending

on the identity of the maker, etc. An important concept for framing these questions is that

of Bourdieu's idea of cultural capital. Cultural capital, as Bourdieu defined it, is the set of

cultural practices that come with one’s identity as a member of a particular social class

[16]. These practices often confer benefits, often just a matter of knowing how to act in

certain social situations. His theory was developed when he investigated why poor or

working class French students failed to get upper class jobs. He found that knowing

obscure bits of knowledge (e.g., the cultivation of a taste for certain kinds of food, music,

art) are instilled in children, and that these behaviors act as gatekeepers throughout their

lives.

Ethnocomputing attempts to stand that relationship on its head: after all, children

who are part of a family or community of a lower socioeconomic status still have cultural

capital in their own heritage arts and vernacular practices. Rather than discard that as

irrelevant for its inability to allow them to ‘pass’ as upper class society members, we

instead investigate its value as ‘computational capital’—a well spring of algorithms,

geometric forms and other formal properties. Just as financial capital can be made more

liquid or fungible when converting real estate to cash, the simulations of CSDTs can

 8

make the culture of these underrepresented students more fungible as forms of computing

and mathematics.

Framing math and computer science as culturally situated with the CSDTs,

returns to students what had been stripped away. This is especially rewarding for me,

when we looked at this process from the point of view of a students’ culture imparting to

them some advantages, frequently from parents who look to improve their children’s

lives with the benefit of what they themselves have learned. The difficulty for

underrepresented students, with only a small number of exceptions, is that their parents

did not successfully navigate the public school system, and yet these parents are

responsible for seeing that their children accomplish what they did not. In the privileged

world, this is not the case, since these parents are generally able to provide an enormous

amount of guidance to their children. Privileged parents know what to purchase for their

children and they have the means to do so, yielding all of the requisite experiences they

need to know and have, in particular, those that are most beneficial and helpful to

academic success. The Culturally Situated Design Tools help to restore to students some

of the value of their own cultural capital – value that has been there all along, but

unacknowledged.

1.5 Measuring Success in Computational Thinking

The assessment of K-12 computing education can be straightforward when it

comes to vocabulary or other materials that can be tested on a multiple choice exam, but

the knowledge gained through programming experience is not as easily determined. As

Resnick states the problem, "there is little agreement about what computational thinking

encompasses and even less agreement about strategies for assessing the development of

computation thinking in young people [17]". One complication is that there may be a

series of incremental improvements, with a great deal learned, despite never reaching the

original goal. It will be important to capture these incremental successes in the natural

order in which they occur, so as to track the development of computational thinking in

students as they work to problem solve their way through the development of their

designs.

 9

In their work with the Scratch programming simulation environment, Resnick and

Brennan have attempted to assess student learning through three different methods: 1)

project portfolio analysis, 2) artifact-based interviews, and 3) proposed design challenges

[17]. Project portfolio analysis attempts to measure the number of code blocks used in the

creation of a student project, trying to get at the depth of exploration of the available code

block tools offered in the Scratch programming environment. Artifact-based interviews

involve talking with students about their Scratch project. Design challenges involve

asking the student to select from a pre-determined list of tasks that are designed to

demonstrate the depth of their knowledge of programming in Scratch.

In working to assess the efficacy of teaching computing with the pCSDTs, an

analysis method of student successes must be developed that accounts for the various

nuances that indicate success. For that reason, we used a mixed-method approach, one

that includes both quantitative data and qualitative student observations and interviews, in

order to improve the assessment. Again, following Resnick, it is important to develop a

"computational thinking framework" to guide these assessments [17].

1.6 Software Development

This dissertation focuses on the use of CSDTs as the embodiment of the

ethnocomputing concept. The CSDTs are a set of Java and flash applets, freely

downloadable from the Internet. Each of the CSDTs focuses on a different craft or

cultural practice, typically one linked to the heritage culture or vernacular culture of

underrepresented students. Ethnocomputing research begins with the search for math and

computing concepts and practices embedded in these crafts, and develops CSDTs as a

medium in which their simulation can make use of these indigenous concepts. The

CSDTs are, however, sufficiently open-ended to allow flexibility in the creative agency

of students as they develop these designs, which often results in hybrid forms, as students

bring their own sensibilities, experiences and imaginations to bear on their creations.

This work afforded the opportunity to investigate cross-cultural software

development, by means of ethnographic studies of craftspeople, student users, and

developers. The CSDT software development followed the Agile method, where the

developer starts with a tentative solution and then refines that solution over time, until a

 10

satisfactory final version results. The revision process employed feedback from

craftspeople, the students using the software, and teachers in their classrooms.

The CSDTs are part of the constructionist genre of programmable software that

seeks to teach mathematics and computer science concepts to students. Constructionist

learning theory states that student learning occurs through constructing artifacts, in this

case, simulations of culturally situated artifacts within the CSDT software. During this

construction, there will be a ‘dance of agency’ [18], [19] that occurs as the student

negotiates their way through using the software interface. Occasionally, this dance will

create errors or expose misconceptions, but as the student continues to work, these all

tend to get resolved in the production of the final artifact.

1.7 Content Agnostic Position

Many proponents of constructionist based learning state that the simulated content

is irrelevant. Whatever the topic or subject of the students efforts, ceteris paribus, the

constructionist learning results are equally positive outcomes. For example, the Scratch

programming environment takes this approach: the subject of the Scratch simulation is

entirely up to the student. However, as we will see in chapter 4, these content agnostic

platforms frequently result in simulations that reflect a consumption-obsessed culture,

which is antithetical to a healthy cognitive development for children.

On the other hand, a medium which restricts children’s creativity too much would

also be counterproductive. As we will show, it is possible to have the best of both worlds:

a ‘content aware’ medium that lets students begin in a design realm that honors authentic,

grass-roots practices (which may be urban cultural practices such as graffiti, as well as

heritage practices such as weaving textiles), but also one that can be adapted through the

student’s ingenuity and creativity and shaped to any topic or content. The preliminary

data from this research shows that this approach is sufficient to satisfy both the need for

healthier subject matter and the children’s own desires to deploy pop culture references

or other ironic or playful juxtapositions.

 11

1.8 Conclusion

In this overview, we have examined the significance of the problem of lack of

STEM participation by underrepresented students, its roots in the myths of biological and

cultural determinism, and the potential for ethnocomputing to re-envision this cultural

identity as a bridge rather than a barrier. We have briefly reviewed the process for

ethnocomputing development, the significance of cultural capital as computational

capital, and finally, the tension that must be negotiated between the over-restriction to

cultural form and the under-restriction of the content agnostic position, in order to

achieve the ‘content-aware’ balance sought by ethnocomputing.

In closing, I note that the potential advantages of the content-aware approach

covers more than just students from underrepresented groups. Anti-racist education is

good for everyone. It can help the dominant culture to understand traditionally silenced

'ways of knowing', and also the people who hold onto these unique knowledge systems

[20]. It is my hope that ethnocomputing can be used as a tool to decolonize computing

and mathematics pedagogy. It can also be a way to approach the healing of historical

harms, by reshaping mainstream U.S. culture's tendency to think with colonial attitudes

concerning marginalized others' 'primitive knowledge' or 'primitive way of life'.

Additionally, ethnocomputing can be a way to bridge the thought processes between

groups of people who hold very different world views.

 12

2. WHY ETHNOCOMPUTING?1 2

2.1 Introduction

In this chapter, we look at the development of ethnocomputing from

ethnomathematics. Ethnocomputing inherits a great deal from the ethnomathematics

research programs that preceded it, and so it is right to begin this chapter with a review of

the role that ethnomathematics plays in both mathematics education and what it passes on

to ethnocomputing. We next turn to ethnocomputing and the Culturally Situated Design

Tools. The CSDTs are part of the constructionist genre of programmable software that

seeks to teach computer science and mathematics concepts to students as they construct

cultural artifacts. The CSDTs started out as a set of Adobe Flash programs with a primary

focus of teaching the mathematics concepts embedded in cultural practices. The work on

the CSDTs evolved into work on the pCSDTs or programmable Culturally Situated

Design Tools, a set of Java applets deployed on the Internet. From here, we look at the

domains of interaction that our software faces in the classroom. These interactions

represent three challenges to the software developer. 1) To create pedagogical software

that is suitable for the classroom. 2) This software needs to be suitably designed to

"translate" the particular indigenous or vernacular knowledge under investigation into the

analogous knowledge forms contextualized for student learning. 3) Successfully negotiate

between the “fidelity” of the simulation as an exact replica of the indigenous concept, and

the utility of the simulation as a fit to the classroom curriculum. Finally, we look at the

design process through an ethnocomputing lens for the West African crafts of Kente cloth

weaving and Adinkra stamping.

Portions of this chapter previously appeared as: B. Babbitt, D. Lyles, and R. Eglash, "From
ethnomathematics to ethnocomputing," in Alternative Forms of Knowing (in) Mathematics, S.
Mukhopadhyay and W.-M. Roth, Eds., ed Rotterdam, The Netherlands: Sense Publishers, 2012, pp. 205-
219.
Portions of this chapter have been submitted to: W. Babbitt, M. Lachney, E. Bulley, and R. Eglash,
"Adinkra mathematics: a randomized, controlled study of ethnocomputing in Ghana," For the Learning of
Math., submitted for publication.

 13

2.2 Ethnomathematics

The ethnomathematics literature has no lack of visionary statements on what its

advantages might be. In some cases, the motivation comes from the concept of “cultural

relevance” to a specific population. Jama [23] for example draws out normative

connections between indigenous mathematics and science of the Somali culture in the

Horn of Africa region and local school curriculum. He suggests that ethnomathematics

can be used as a “special language” to help students see themselves as historical and

political actors through deep engagement in their own cultures’ mathematical heritage. In

other cases, ethnomathematics is framed more broadly as a way to challenge curricular

Eurocentrism [24]-[26]. The latter stresses the use of ethnomathematics not in terms of

specialized fit to a particular population, but rather as a way to enable student’s

understanding of math as an empowering tool in the repertoire of humanitarian practices.

As a research program present within and outside school walls, ethnomathematics

challenges classic notions of math education while also revealing power dynamics about

who is represented and hidden within curricula.

 Zaslavsky [27] describes her early ethnomathematics research as motivated by the

fact that African mathematics did not appear in US library catalogs, nor did she find any

information on the topic when she contacted the Secretariat in Ghana. This is not a casual

happenstance. Western “exceptionalism” has a pervasive hold on its math and science as

the only accurate way to explain reality [28], [29]. This has profound influence on non-

Western education. Indigenous math and science continues to be marginalized in

Ghanaian and other African curricula [30], despite persuasive arguments that its inclusion

may help with problems of enrollment, engagement, and performance [31].

In the US context, these arguments have found empirical support in the work of

the Alaska Native Knowledge Network. Lipka et al. [32] for example developed a set of

culture-based lessons for native Alaskan students, which combine discovery or inquiry

learning pedagogy with contexts that emphasize native Alaskan traditional

knowledge. Their work shows statistically significant improvement in pre/post test scores

for the experimental group in comparison to their control group. Our own team has

conducted research that provides similar quantitative evidence for the efficacy of this

approach among students of many racial backgrounds--not only Native American but

 14

African American and Latino as well. In this study, African fractals were introduced in an

ethnically diverse high school computing class in New York City: this experimental

group showed statistically significant improvement on pre/post comparisons relative to a

control group which received similar instruction without any cultural connections [33].

Despite this evidence for efficacy and liberatory potentials, there has been little

serious adoption in most curricula [34]; even when cultural connections are introduced,

the overwhelming tendency is to only superficially represent indigenous knowledge

[35a]. While the “culture” side of ethnomathematics can vary widely--including topics

from vernacular culture such as graffiti, working class skills such as carpet laying, and

even investigations of cultural influences in professional mathematics--indigenous math

plays a special role: as noted in chapter 1, it directly contradicts the pernicious myths of

genetic determinism.

Finally, there is a mimetic resonance between these historical modes of

epistemological domination and pedagogical styles of authoritarian learning. Just as rote

memorization is often justified to satisfy the ends of testing at the expense of learning

that students find meaningful, lasting colonial legacies form a “neocolonial” context that

justifies a putative universal form of knowledge at the expense of the flourishing of

cultural traditions of living. Thus, the potential for indigenous knowledge to have

meaningful influence on student performance is not merely a matter of test scores, since

institutional bodies that aim to meet the demands of a workforce employed by global

financial forces, environmentally destructive industries, and increasingly deadly

militaries create those tests. It is no surprise that indigenous knowledge systems appear to

be ill suited for the mathematical and computational knowledge base of these enterprises.

Nonetheless, it is our hypothesis--supported by statistically significant empirical studies--

that incorporating indigenous knowledge systems into a math and computing curriculum

can both raise student scores on tests that are influenced by these institutions, and

simultaneously help to impart the cultural, ecological and ethical knowledge [36] that

will offer solutions to these harmful global forces.

A growing body of research suggests that education can improve its contributions

to students’ knowledge and understanding when it offers them the opportunity to interact

emotionally and critically with content that is culturally relevant to their communities and

 15

their identities [37], [38]. As we will see in chapter 6, our Ghanaian case study supports

that position, using a controlled, randomized study to show curricula based on research in

ethnomathematics and ethnocomputing can result in better student motivation and

academic engagement. Simultaneously, we suggest that including indigenous knowledge

can offer deeper connections with sustainable relations between the natural and social

worlds. We see this study as part of the larger “culturally relevant pedagogy” framework

that fights against political and epistemological inequalities through “restoring cultural

dignity and offer[ing] the intellectual tools for the exercise of citizenship [39]”.

As noted by Rosa and Orey [40], modeling is an essential tool for

ethnomathematics. But when we create a model for a cultural artifact or practice, it is

hard to know if we are capturing the right aspects; whether the model is accurately

reflecting the mathematical ideas or practices of the artisan who made it, or imposing

mathematical content external to the indigenous cognitive repertoire. If I find a village in

which there is a chain hanging between two posts, I can model that chain as a catenary

curve. But we cannot attribute the knowledge of the catenary equation to the people who

live in the village, just on the basis of that chain. Computational models are useful not

only because they can simulate patterns from the outside, but also because we can

compare their underlying algorithm to the ethnographic data we gather how artisans

create artifacts, describe their ideas and connect material designs with cultural concepts,

thus providing insight into this crucial question of epistemological status.

2.3 Ethnomathematics to Ethnocomputing

Ethnomathematics faces two challenges: first, it must investigate the

mathematical ideas in cultural practices that are often assumed to be unrelated to math.

Second, even if we are successful in finding this previously unrecognized mathematics,

applying this to children’s education may be difficult. These difficulties give rise to the

approach we refer to as “ethnocomputing.”

Ethnocomputing offers two advantages over ethnomathematics. First, although we

like to think of mathematics as being comprehensive in its ability to model patterns, some

pattern generation systems are better conceptualized through the disciplinary idioms of

computer science. Second, the conceptual framework of computing—the idea of

 16

information processing, algorithms, graphical user interface, etc.—allows new insight

into the artisans’ own perspective in cases in which there is an analogous process.

As noted above, our work with CSDTs made it clear that there is a component of

ethnomathematics that has received little attention, because such “computational

thinking” [41] is outside the purview of the standard math curriculum. As Margolis [42]

notes, computing education is a key to the high-status skills and knowledge that allows a

student to tap into the grid of twenty-first-century opportunities; one where under-

represented students are often left out.

2.4 From CSDTs to pCSDTs

 The Adobe Flash based CSDTs were designed to teach the mathematical concepts

embedded in indigenous practices and artifacts. However, this approach to math

education seemed to leave out the skill sets that Margolis [42] talks about as being

important to possess in academic and career success. The idea of converting the CSDTs

into programmable interfaces that would teach these skill sets to underrepresented

students was indeed compelling.

Figure 2.1: Adobe Flash version of the CSDT for cornrow hairstyles

 17

It was unclear, however, whether this effort to teach both math and computing in

the same interface could be applied to all CSDTs. Fractal geometry is a special case in

that it is inherently mixing computing and mathematics. What about teaching

conditionals, data structures, and algorithms? Such concepts were present in the CSDTs,

but too deeply embedded in the tools. Take, for example, the “Cornrow Curves”

simulation. Figure 2.1 shows the CSDT control panel and resulting simulation for three

braids. The photo at right is one of many “goal images” that students can attempt to

simulate. At left is the simulation. The left-most plait of the top braid is high-lighted to

indicate that the numbers in the control panel refer to that braid. The simulation uses a

recursive loop in which the original plait image is duplicated, and then geometric

transformations are applied to the duplicated plait. This cycle is repeated, duplicating the

previous duplication, until the desired number of plaits have been generated. However

this algorithm remains invisible to the students; they only see input boxes for the

parameters.

In order to make that algorithm visible, we would have to create a

“programmable” Culturally Situated Design Tool, or pCSDT. Projects at CMU (“Alice”)

and MIT (‘scratch”) have developed programming interfaces that allow students to

generate algorithms by dragging and dropping snippets of programming language

(“codelets”) into a ‘script”—thus eliminating the frustrating experience of having a

program fail because of an obscure syntax error in the code. But would students who had

experienced the ease of the older CSDTs, with a purely parametric interface, be willing to

create these scripts? Would we have to hide the older versions from them? Finally, we

also needed to create an interface that would be easily extensible for the creation of

additional pCSDT applications—we did not want to build a unique interface for each

tool. And of course all this needed to happen while keeping true to the cultural

connections that motivated the project in the first place.

Our design efforts crystallized around a Java applet that could be easily deployed

on the web, but also brought in on physical media (CD or flash drive) in case we were in

a situation with low bandwidth (or no bandwidth) internet access. To meet the

requirement of being easily extensible, the program is constructed in layers. The Core

layer contains the interface that is used for every programmable CSDT. The application

 18

layer contains all the code relevant to each specific tool. For example, in the case of the

Cornrow Curves applet, the application class says that we want codelets for

transformational geometry such as “Rotate,” a Cartesian grid for the background, a plait

image for the default object, etc. Some codelets such as “Repeat While” loops are

common to all pCSDTs, so they lie in the in the core class. Figure 2.2 shows the resulting

pCSDT for cornrows.

Figure 2.2: Programmable Culturally Situated Design Tool for cornrows

The panel at the left contains the list of codelets, the center panel is the script

created by dragging and dropping codelets, and the right-most panel is the simulation

window. When users are finished with a script they can expand the simulation window to

full screen before activating the script. At the top of the script, the user has declared a

counting variable (called “a”) and initialized it with a value of 1. The next codelet is a

control loop, to the effect of: “While a < 20, do the following.” Inside the loop are

codelets for duplicating the plait image, and applying geometric transformations

(rotation, scaling, and translation). At the end of the loop, the variable “a” is incremented

by 1. Thus the script makes visible the algorithm that was invisible to users of the

 19

original CSDT. We hypothesize that a non-numeric version of something like this

algorithm is also cognitively available to the stylists who create these braids.

One of the most interesting aspects of ethnomathematics simulations is that the

results that they produce can surprise the software developers who create them; that is,

we were not completely certain what visual patterns we would be able to produce until

we actually created the simulation and began to experiment with it. We found that the

new pCSDT allows many patterns that were very difficult to make with the old version.

For example, in Figure 2.1 you can see 3 braids created on the old version: each of those

braids required a separate series of trial and error experiments. In the new pCSDT,

nesting one control loop inside another allows the user to automate the process of

generating a series of braids. Another problem is that real cornrow braids sometimes have

rotation values that switch back and forth, like a sinusoidal waveform. On the old version

the user would have to create that effect by piecing together separate braids. The new

pCSDT version allows users to introduce conditional codelets (“if-then” or “if-then-else”)

so that values such as rotation can be altered at any point in the braid.

The pCSDT version also allows some patterns that are impossible to make with

the older version. For example, it is simple to introduce color by placing the color codelet

into the script and entering R-G-B values (0-255). By inserting the counting variable

(“a”) rather than a value (and this must be the value “a” multiplied by a constant, for

which there are codelets), the color can increment with each plait, such that a braid can

begin with blue and end with red, with corresponding gradients of purple in-between. By

introducing a second variable (“b”) we can keep track of odd or even duplications, and

thus alternate colors in the simulated braid (Figure 2.3). Interestingly, we later realized

that alternating colors are often used in physical braids: the ethnocomputing approach

helps to alert us to formal aspects that were previously overlooked, and create a model for

their simulation.

 20

Figure 2.3: Simulated braid with alternating colors

2.5 Domains of Interaction in the Classroom

As noted above, there is a second challenge to ethnomathematics, and that is the

challenge of converting these results into a pedagogical form suitable for pre-college

classrooms; in particular for under-represented ethnic groups. Of course there are other

applications for ethnomath, but education has been the most important. That is because of

the possibility that cultural connections to math may improve the low performance and

interest in mathematics that we tend to see in African American, Native American, Latino

and Pacific Islander children in the US. As noted in chapter 1, ethnomathematics could

potentially offer a powerful counter to both the “acting white” myth and the genetic

determinism myth. But merely pointing to a photograph of some intricate basket or

monumental pyramid is not sufficient for engaging children or developing their

mathematics skills. Here too computing can contribute.

In summary, we find the following three domains of interaction for

ethnocomputing in the classroom:

 21

 a. Simulations must “translate” from the particular indigenous or vernacular knowledge

under investigation into the analogous knowledge forms contextualized for students in

classrooms. For example, Native American traditions use the “four winds” or “four

directions” as an organizing principle across many different knowledge systems:

cosmology, religion, health, architecture, weaving, etc. [43]. This makes it an excellent

candidate for teaching the Cartesian coordinate system using simulations of these

artifacts such as bead work; we can clearly justify the four-quadrant coordinate system as

an indigenous invention, and not merely a western idea that is imposed on these artifacts

[44]. At the same time, a pedagogy that introduces these artifacts should do so with the

social context in which they arise. The cultural background pages for the “Virtual

Beadloom” CSDT, for example, includes the use of Iroquois bead work in their US

treaties and the influence of the Iroquois confederacy on the creation of the US

constitution. In such instances we have attempted to steer a path between the Scylla of

“white-washing” history (such that the horrors of exploitation and oppression are

completely erased), and the Charybdis of a story of “victimhood” (which could

demoralize students).

b. These math and computing analogies are rarely exact; there is typically some

negotiation between the “fidelity” of the simulation as an exact replica of the indigenous

concept, and the utility of the simulation as a fit to the classroom curriculum. For

example, weavers have to worry about fitting horizontal weft threads into the vertical

warp without creating slack, hiding the ends when a new color is started, etc. All of these

activities might be modeled: for example you could model the relations between two

adjacent horizontal weft strands as 180 degrees out of phase. But that would complicate

its use at lower grade levels where the concept of “phase” is not taught, and even at upper

levels, being forced to think about phase while simultaneously using an iterative

algorithm would make use potentially frustrating. In contrast to critics who complain that

ethnomath adds too much external math to artifacts, the challenge in developing these

simulations is to leave out much of the “high fidelity” modeling that would potentially be

possible, in order to create a lower fidelity model that is both optimal for use and offers a

clear translation of indigenous knowledge.

 22

c. In addition to attempting to negotiate the tension between fidelity to the indigenous

conception and utility to the curriculum, a third tension exists when trying to satisfy

student needs for relevance and creative initiative. For example, in our initial attempts to

use fractal models of African artifacts [45], we found that African American students

occasionally expressed some hesitation over what was, for them, dusty museum objects.

For this reason, our first simulation focused on cornrow hairstyles, which offered a

compromise between African heritage and objects and practices familiar to them as part

of contemporary African American culture. However as our websites have developed we

have found that even for familiar practices (bead work in Native American communities,

graffiti among the urban “underclass,” etc.) there is a need to teach these histories (where

else are they going to learn about the history of graffiti?). Similarly, the ability to make

creative use of these tools, and generate their own designs (some of which bear no

resemblance to traditional examples) is critical for engaging these students, and

encourage a sense of ownership over the mathematics. Moving from consumption to

production, taking pride in self-efficacy and designs, learning to use math and computing

as a means of self-expression rather than the disciplinary regime of “you got the wrong

answer”—these are all critical components of ethnocomputing pedagogy.

Figure 2.4: Three domains in ethnocomputing

 23

2.6 Inquiry Learning

Inquiry-based learning, in which students either invent a question themselves, or

have their inquiry assigned to them, is increasingly supported by innovations in pedagogy

(cf. [46]). A crucial component of the education theory supporting inquiry learning is that

of scaffolding: here some temporary conceptual aid allows a student to advance their

understanding, such that with a firmer grasp on new concepts, they can then climb to

higher levels. Brush and Saye [47] introduce the terminology of “hard” and ‘soft”

scaffolding. They refer to teachers as providing ‘soft” scaffolding, by which they mean it

is contingent and adapted to circumstances. In contrast, they suggest that multimedia

systems, of the type they introduce (which consists primarily of hyperlinked media to

support high school social studies inquiry), can be labeled “hard scaffolding” because the

designer must pre-plan whatever learning aids will be available.

In our case, neither category fits well: the scaffolding is contingent, not pre-

planned: we never anticipated that a student would generate a braid simply by creating

each plait as a separate object, as we describe below. But it is also not a contingency

generated by a teacher; rather it is a contingency generated by the interaction between a

student and a digital medium that is sufficiently flexible and powerful enough, to allow

creative explorations.

Rather than call this hard or soft inquiry, a better category might be “mangled

inquiry.” Student’s struggling with writing a script can be described using Pickering’s

[18] model of “The Mangle,” in which he detailed how scientific discovery occurs as a

“dance of agency.” Pickering describes the failure to accomplish a particular goal as

“resistance” (in the language of Pickering, nature resisting a “capture” of its agency by

some model or machine). The scientist then responds by seeking a new strategy to

overcome that failure—changing models or machines or procedures until s/he finds one

that works (“accommodation”). In participant observations, we have seen this play out in

placement of the codelets. For one student, the resistance came in the form of a logic

error of the student placing a “Duplicate” codelet outside the control loop in their script.

The resulting struggle to find a solution eventually led to accommodation when they

moved the codelet inside the loop. However, it is critical to understand that in Pickering’s

view, there is not simply one “correct” model or machine. Multiple different

 24

accommodations are possible, including a change of goal. And in fact, there are multiple

locations within the script that would have allowed this student to successfully generate a

braid, although the behavior might have varied slightly (e.g. there would be one less plait

if you duplicated after the variable is incremented). In a different student observation, it

was clear that this mangled inquiry occurred in two stages: first when the student

attempted an initial strategy that was temporarily successful, creating the braid with

individual objects, and second, this allowed the student to proceed to the point where they

were able to set a higher goal for themselves (from the goal of merely making a braid by

any means necessary, to the goal of having the script automatically generate the entire

braid sequence).

Indeed we can view our own attempts through this same lens of “mangled

inquiry”. Our planned evaluation system at a local school met with initial resistance;

there was no way to use pre/post evaluations given the enormous variation in student

attendance. But we accommodated that resistance by focusing on the discussions that

followed the software experience, and thus gained some insights into the elements that

increased students’ engagement in math and computing conversations.

Inquiry learning works best when it is open-ended. Students need to be able to ask

questions, pose answers, and explore the implications of those answers—not necessarily

“the one right answer” but rather discovering what new patterns emerge when those

answers are used. In that exploration, new questions can then be developed for further

consideration. The new pCSDTs offer exactly that scenario. As drawings are created they

can be changed by adding additional coding elements. This added complexity will result

in scripts that could benefit from rewriting, and the results offer new horizons for further

exploration. As Resnick et al [48] note about MIT’s Scratch, it is critical to offer a “low

floor” (easy to get started) and “high ceiling” (enormous room for expansion).

2.7 Ethnocomputing: Kente cloth

 2.7.1 The History of Kente Cloth

The history of Kente cloth weaving is not completely certain, however, according

to Rattray weaving Kente was probably introduced to the Akan people of Ghana around

the 1600’s. Tradition has it that Ota Kraban returned from the Ivory Coast with a loom

 25

and set it up at Bonwire, Ghana [49]. Early Kente cloth was woven from silk thread,

however, today the cloth can be produced by any number of different materials which is

often determined by its commodity price, as well as the desired look of the finished

product.

Kente Cloth patterns can be observed in the making in many places in Ghana,

particularly in the village of Bonwire, and is offered for sale through the major markets of

most Ghanaian cities, such as those of Kumasi and Accra. The distinctive colors and

patterns are found in everything from sandals, hand bags, shirts, and of course cloth. In

the United States, Kente Cloth makes an appearance in many different ways, but usually

as a means of conveying a symbolic message to African Americans of the African

diaspora.

Examples of Kente cloth fabric can be seen in Figures 2.5 – 2.7. Each of these

designs convey a particular meaning through the design of the geometric figures. Ohene

Anewa (Figure 2.5) represents the Kings ‘All seeing eye’, as in the King knows all.

Nkyimkyim (Figure 2.6) is a zigzag pattern which represents the notion that life is not a

straight path. Afa (Figure 2.7) means ‘I have taken it’ [50].

2.7.2 Kente Cloth pCSDT

The idea of creating a Kente cloth simulation came about while conducting

research on Kente in Ghana. Kente cloth is often mentioned in passing in the

ethnomathematics literature, but there is little sustained discussion. When we think about

the algorithms involved in the creation of Kente, it becomes easier to see that computing

Figure 2.5: Ohene Anewa [50]

Figure 2.6: Nkyimkyim [50]

Figure 2.7: Afa [50]

 26

offers a rich array of possibilities. Software design requirements would need to illuminate

just how the weaving process should be represented to the user. Once this representation

is determined, it should then be straight forward to create the weaving simulation. The

only remaining decisions would involve determining the level of complexity to hide or

show to the user in the codelets for the simulation.

The geometric patterns of Kente, along with the vibrant use of color in the

designs, make it especially suitable in an ethnocomputing context. However, simulating

Kente Cloth would not be without lengthy design negotiations in order to maintain

fidelity to the practiced craft, and suitable design for use with students. In chapter three

we will look at the process of software development related to our Kente cloth simulation

efforts, and in chapter four some observations of children using and learning with the

Kente cloth simulation tool.

2.8 Ethnocomputing: Adinkra Stamping

2.8.1 The History of Adinkra Stamping

Adinkra symbols can be primarily observed today in Ghanaian textiles. The Akan

peoples of Ghana adopted Adinkra textiles around the year 1800, yet the origins of the

craft remain uncertain [51]. Many of their geometric forms exist in older archaeological

artifacts, across a wider geographic range. In the case of the textiles, these were originally

used in the funerary arts with each symbol communicating a particular idea to the

departed loved one. Contemporary uses of Adinkra symbols have expanded well beyond

the funerary arts. Traditional Adinkra artisans in Ntonso, Ghana still carve symbols from

the calabash gourd, make their own ink, and stamp various types and styles of cloth

primarily for tourists that visit their shops. A drive through nearby Kumasi reveals

Adinkra symbols painted on garden walls, the columns of Internet cafes, and molded into

the backs of plastic chairs. In the 21st century, Adinkra has become a global

phenomenon. In the United States, Adinkra symbols adorn everything from t-shirts and

jewelry to braiding salons, and their forms and names are used in lively and creative ways

by African American community organizations and hip-hop artists.

 27

2.8.2 Adinkra Stamping pCSDT

Figure 2.8: Dwennimen

Figure 2.9: Akoko Nan

Figure 2.10: Sankofa

Willis [37] offers a comprehensive summary of the meaning assigned to each

Adinkra symbol. Dwennimen (Figure 2.8) is the ram’s horns and means strength in mind

and body, but also means humility. Akoko Nan, the hens foot (Figure 2.9) is the symbol

of protectiveness, parental discipline, but also patience and mercy. The Sankofa (Figure

2.10) means ‘go back and get it’, also ‘go back to your roots’, generally: learn from the

past in building the future [51].

Our efforts in constructing an Adinkra pCSDT have centered on the geometric

shape of the symbols themselves. As is apparent in Figures 2.8 through 2.10, many

Adinkra symbols incorporate logarithmic curves in their design. This is perhaps not

surprising, as the logarithmic curve has been described as ‘the curves of life’ [52], and

many of the Adinkra symbols are rooted in physical, sometimes living objects such as the

ram’s horns and the hens feet above. Clearly any attempt to model Adinkra in a pCSDT

would involve simulating logarithmic curves, the question becomes how and to what

extent the complexity of the mathematics is revealed to the student using the software.

Please see chapter three of this work for development stories concerning our Adinkra

stamping simulation development. Please see chapter four of this work for participant

observations of the Adinkra stamping simulation.

2.9 Conclusion

In conclusion: the answer to ‘Why Ethnocomputing?’ that this chapter has

presented is three fold.

 28

First, ethnocomputing extends ethnomathematics in important ways.

Ethnocomputing seeks to include constructionist ways of learning that encourage

‘computational thinking’. The important ability to observe a process, determine how and

if the process is working as expected, and make changes to remove imperfections [41].

The skill of computational thinking is thus more important for students to develop than

simply competing in the job market, although that too is critical.

Second, ethnocomputing seeks to deliver these lessons using ‘inquiry learning’

methods. Inquiry learning, with all of its varying degrees of exposed scaffolding and

complexity, soft inquiry, hard inquiry and the like, lets the student explore for themselves

at their own level of expertise. This exploration allows students to build their own

knowledge, and most likely, because of the deep interaction with the software during this

construction, they will retain the knowledge that they build.

Finally, and in my opinion, most importantly, ethnocomputing – through its

choice of cultural practices and artifacts in simulation – exposes students to the cultural

capital that they have always had in some sense, and yet it is unlikely that they ever

tapped into the full extent of its power. This contextualization of learning in cultural

objects helps students, especially underrepresented students, own their learning. This has

been the most rewarding part of this research for me, the experience of having a student

‘light up’ at the notion that someone took the time to design and build a simulation of her

hair style.

 29

3. SOFTWARE DEVELOPMENT AND HCI3

 3.1 Introduction
Ethnocomputing requires that we focus in on the various aspects of

‘computational thinking’ within the construction of indigenous craftwork. These

computational concepts and practices form the basis for what we refer to as cultural

artifacts in simulation [54]. As we saw in the previous chapter, these computational

elements are not always readily apparent, and at times, they take considerable ‘detective

work’. Still, it can seem like the easy part of the research when the task of reproducing

the craft in software is at hand: accurately reflecting the crafting process—both

aesthetically as well as in terms of cognitive modeling—while simultaneously being

useful to teachers in the classroom, and on top of all that, remaining an attractive activity

for students can be enormously difficult and complicated.

This chapter will concentrate on the development of the programmable Culturally

Situated Design Tools (pCSDT) for Cornrow Curves, Kente Cloth weaving, and Adinkra

stamping simulations. The development of the Kente and Adinkra software applications

involved interviews with craftspeople, conducted under a protocol approved by the

Rensselaer Institutional Review Board (#998), with the consent of interview participants.

These crafts people live in Bonwire and Ntonso, both villages in Ghana. These interviews

helped to inform the software development of the applications that followed, using the

Agile Software Development method. Once coding was sufficiently complete to deem the

software usable, usability testing began at a local junior high school in Albany, New

York in order to enable the feedback loop that would inform further development and

software ‘tuning’. On subsequent visits to Ghana the software simulations were then

presented for comments by the Ghanaian craftspeople, in order to ensure that the software

was providing respectful and accurate representations.

The pCSDTs—similar to Scratch, Alice, and AgentSheets—are examples of the

constructionist genre of computer programs; their goal is to teach both mathematics and

computer science concepts to students (and for students without prior knowledge, they

Portions of this chapter previously appeared as: W. Babbitt, "An analysis of the programmable Culturally
Situated Design Tools from an HCI perspective," presented at the 3rd Annu. Symp., Theory and Research
in HCI, Troy, NY, USA, 2012.

 30

also aim to teach some cultural background as well). Constructionist learning tools grew

out of Piaget’s constructivist theories of learning, which Papert later refined into logo or

“turtle graphics” and eventually the “constructionism” school of thought. Within our

constructionist environment, learning begins with the simulated design of a culturally

significant visual artifact. This learning process has been referred to as design agency

[54], as it can be described by Pickering’s ‘dance of agency’ framework originally

proposed as a model of scientific discovery. Here, it is not the professional scientist in

dialog with nature, but rather a student in dialog with the software. The student has some

goal in mind, but soon encounters ‘resistance’ in the process as the software fails to

perform as she hoped. The student then adjusts the script, which results in further

feedback loops of experimentation. Sometimes it is a matter of the student altering her

own methods or goals; occasionally one finds a work-around to a barrier as if the

software was making a concession. Eventually there is a meeting place between what the

software is ‘willing’ to do and what the student is willing to settle for. The phrase ‘trial

and error’ gives the mistaken impression that there is one right answer and it is just a

matter of finding it, but the ‘design agency’ portrait shows that the process is more

emergent than what ‘trial and error’ suggests. Learning in a constructionist medium is a

lot like a population of organisms gradually mutating and changing their own

environment in the process of biological adaptation [18].

The original indigenous artifacts, after which we pattern our constructionist-style

pCSDTs, have computational thinking deeply embedded in their creation. In many cases,

this involves a stepwise process that we can equate to steps in an algorithm. When we

look carefully at these cultural artifacts, we find that these stepwise instructions follow in

a sequence, with repetition and contingent execution based on the current status of the

output. These ideas map directly to the computer science concepts of program flow of

control, looping, and conditional statement execution. In simulation, these concepts form

the building blocks of constructing cultural artifact representations through computer

programming.

The development of software that simulates cultural practices and produces

relevant artifacts has involved significant design challenges. As a fundamental starting

point, the work of Vygotsky has been crucial to informing our work. His ‘zone of

 31

proximal development’ (ZPD) describes the user experience that the software must be

designed to facilitate. The ZPD represents the point at which the level of difficulty is such

that the student is sufficiently challenged in the problem-solving task in which learning

occurs, but not so challenged that they become frustrated. Aim too low and the child is

bored and does not learn; too high and the child gives up [55].

In addition to Vygotsky’s ZPD, Resnick’s notion of “low floor and high ceiling”

[56], has also been an important software design principle for us. The low floor notion

can be thought of as ‘low barriers to entry’: the software is very easy to start using,

offering intuitive and uncomplicated means for a student to start working on a design.

The high ceiling denotes a kind of scalability: the software should not limit the student in

terms of the complexity of the design they wish to create. Low initial learning curve and

'sky’s the limit' design capability offers the student simulation software that can quickly

engage a student’s creativity, without placing limits on that creativity. The two design

principles, together, mean that we seek to keep the user within the ZPD, which constantly

changes as they grow in ability.

In terms of the pCSDTs, this resulted in a constant assessment, evaluation, and

reassessment cycle in negotiating the software development process to ‘get it right’. This

cycle took place in weekly development meetings, where the course of development was

plotted out for the next week, in light of the previous week’s accomplishments. All the

while, the primary concern and almost all of our discussions focused on the student user,

how much software complexity to show or hide, and how these decisions would impact

software use and student learning.

3.2 Software Development
 Agile or ‘The Agile Method’ refers to a set of guidelines, or more accurately,

guiding principles that should be used in software development. These guidelines come

from the Agile Manifesto and can be summarized as:
Table 3.1: Agile Manifesto [57]

1. Individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over following a plan.

 32

 Agile in the world of ‘for profit’ software development describes a process in

which individuals and interactions emphasize smaller chunks of working code, with

constant feedback from customer collaboration, or as it is sometimes called, the “voice of

the consumer” represented by one of the design team members. This is far more useful in

the design process than obsessing over contract fine print, and it acknowledges the fact

that it is difficult to foresee all the consequences of initial design specifications until you

have working code in front of you. Rather than prevent ‘requirements churn’ by locking

us into a rigid plan, Agile embraces these new facts as they become known, and it allows

rapid (‘agile’) response to desired changes.

 In our world of developing educational software with high pedagogical value, our

customers are our student users. We did our best to negotiate design requirements in our

weekly meetings, anticipating the user experience and challenging ourselves to extend

our abilities as software developers, to write excellent code that would result in excellent

applications. In this case, the code did not represent some mundane business application,

but instead, it represented an exciting and challenging pedagogical tool that students

would enjoy using.

 It is likely that Agile is probably the only method flexible enough to handle the

nature of our particular labor situation with respect to pCSDT development, given the

developer turnover as graduate students join and then leave the effort, let alone the

unforeseen software limitations that we discovered only in the middle of developing a

particular feature. Agile encourages developer flexibility and good humor by keeping

developer focus where it should be, on creating great software.

3.2.1 The Programmable Culturally Situated Design Tools

 The development of the pCSDTs offer a rich opportunity to explore software

development in the context of multiple and sometimes conflicting goals and user needs;

they illustrate the difficulty of 'getting it right' in such circumstances. The pCSDTs offer

this opportunity both through concept formulation and concept refinement, where the

goals themselves can evolve as revisions reveal new aspects of user interactions. An

analysis of the development process is thus relevant to scholars interested in the general

 33

process of software engineering, as well as specific areas such as educational software

design and cross-cultural software design. It specifically offers an opportunity to look at

software development in relation to the intersection of culture in the artifact to be

simulated (both vernacular culture and heritage culture), the cultural identity of the user

(which is dynamically constructed as children grow in their understanding of

themselves), and the learning content (typically in reference to state or national

standards).

 It should now be clear why it was necessary to carefully describe the problems of

deterministic myths in holding back underrepresented students. If the goal is to make a

case for why math and computing is a part of their own heritage—that is, making a case

for why mathematical ideas and computational thinking were already present in the

culture before European colonists arrived—then the simulation cannot simply create the

image of the artifact as seen by an outsider; the simulation must reflect, at some level, the

actual process used by the original artisans who create it. At the same time, it cannot be

too realistic: if we wanted to exactly recreate the original experience, we would simply

provide a pile of beads, thread, or whatever materials were used. As we found, even a

purely mouse-driven interface proved to be too concrete to facilitate students’ growth in

math and computing skills. It must work in a middle ground between symbolic

abstraction and physically concrete experience. The pCSDT’s purpose is essentially to

“translate” indigenous knowledge or vernacular knowledge to a corresponding concept in

the classroom, but the means of translation—to extend the linguistic metaphor—must be

less like an intimidating list of grammatical rules and more like a friend who coaches you

in the new language.

 This brings us to the challenge of integrating learning as a goal. In addition to

ZPD, another term often associated with Vygotsky is “scaffolding” – like a building

created with a temporary series of supports, a moving ZPD should allow the user to build

on previous knowledge and skills to get to higher levels. By building on this corpus of

“translated” indigenous knowledge, students can feel a sense of continuity with their own

heritage culture. This effect is nicely captured by an unsolicited communication our team

received from a teacher at a Lakota Nation school using the bead loom CSDT:

 34

You might be interested to hear that one of the students, who is an IT major, an

artist, a very traditional bead worker and fluent Lakota speaker, was so delighted

with the software that he decided to go ahead and develop his own algorithms

independently. He was really inspired. He said it was the first time that

math/graphing seemed to really make sense or ‘click’ for him. I have not seen

how far he got with computer algorithms, but his final project for our math class

was full of linear models that described his most recent beadwork creations [58].

 It is important to note that the student was using a non-programmable version,

which is why the teacher said, “I haven’t seen how far he got with computer algorithms.”

This is precisely why we needed to create programmable versions of CSDTs, so that the

inherently algorithmic content of indigenous ideas and practices could be integrated into

the learning process from the start, rather than added on later.

 The CSDTs began as a set of Flash based tools (that is, they were developed using

Adobe Flash). The Flash sets of applications were specifically aimed at teaching

mathematics concepts without requiring users to write a program or script that creates

their design, as is the case with the pCSDT Java applets that followed them. The Flash

versions of the tools looked visually beautiful; they were easy even for very young

children; and math teachers were happy with the fit to their curriculum. However, all

updates to system variables happen immediately upon the user making changes to

numeric fill-in fields in the user interface. It is important to note that this is not leaving

the algorithm hidden “behind the scenes”—it is clearly visible to the user (Figure 3.1).

While providing the ‘low floor’ needed, and even exposing them to computational

thinking, it limits the user to filling in parameters for algorithms that are already locked

into the interface. This pairing of pre-determined algorithms and numeric fill-in fields

limits the tool’s ability to be useful in fully developing computational thinking in

students: they can explore the consequences of an algorithm as they vary its inputs, but

not explore its redesign.

 35

Figure 3.1: The Virtual Beadloom CSDT

The pCSDTs, in contrast, use a scripting panel, similar to those of Scratch, Alice,

and other graphical approaches to programming. This scripting panel, shown as the left

most column in both Figures 3.2 and 3.3, provides students with the opportunity to

iteratively develop solutions to programming problems. In the case of the pCSDTs, this

problem or ‘design challenge’ comes in the form of a design of a culturally significant

object or practice. Students drag codelets from the left most column into the middle

scripting column, arranging them in an order that they think will accomplish their design

goals. The student then checks the results of their actions by clicking the ‘run’ button.

The result of their work in the scripting panel will show in the output panel on the right of

the interface. If the design in the output panel matches the student’s expectations, the

student has not learned anything new, but has instead successfully used the knowledge he

or she already possessed. It is when the output does not match the student’s expectations

that the magic of learning takes place.

When the student clicks the ‘run’ button and has an unexpected result appear in

the output window, the student then begins to think ‘What did I do wrong?’ or ‘How do I

fix it?’ or ‘That’s not what I wanted.’ As the cognitive wheels turn and the student

reviews the sequence of codelets that they have attached in the scripting panel,

computational thinking takes place. Perhaps, their thinking is not completely taking into

account all of the nuances of the changes that their codelets are creating in the software

system. As time passes and the student mentally works through the script, step by step,

 36

connections begin to form between objects and then relationships appear. When given

sufficient time and effort to form these relationships, learning takes place, conceptual

changes occur, mental models [59] are updated, and the desired design outcome takes

shape.

3.2.2 The pCSDT Architecture

The current iteration of the pCSDT program, called CSnap, is written in

JavaScript and is shown in Figure 3.2. However, the bulk of my design work has been

with the prior version of the pCSDT applications. This version shown in Figure 3.3 was

written in the Java programming language and was deployed on the CSDT website using

Java applet technology. Building the pCSDTs as Java applets allowed us to code a

complex application that could be streamed over the Internet to a user’s computer,

without the application needing to be installed on the local machine.

Figure 3.2: CSnap interface with the Akoma project loaded

The Java applet programs were designed with a ‘Core’ Java class, containing the

code for the features that were present in all of the pCSDT applications. This base class

was responsible for the graphical user interface GUI, which included all of the graphical

attributes such as the application window, panels, menus, buttons, and text boxes for data

 37

input. The Core class also contained the code for all of the backend processing needed for

handling the scripting features of the application. This modular design, with functionality

common to all of the applications placed in the Core Java classes, was then extended

using Java Reflection, allowing application classes to extend the Core class.

The pCSDT applications, such as the Cornrow Curves, Kente Cloth, and Adinkra

stamping simulations, all had their application specific code in a set of classes that made

use of the Core class, through Java Reflection. Utilizing the reflection @Override

annotation, the code in the application method where the @Override was present then

executed instead of the Core method definitions with the same signatures. This process

allows for functionality in the application to be added dynamically at run time, even

though it may not be known at compile time.

The interactivity of the GUI is handled through a ‘game loop’ that cycled through

application data structures, recognizing user input and changes to system variables in a

predictable fashion. Once the GUI has started and drawn to the user’s screen, the

software enters into the game loop, constantly checking for changes made by the user.

The loop would start with the Starting Values properties pane to pick up changes to

system object attributes, such as screen output size, Cartesian grid color, and the like.

Once changes in system variables were recognized, the game loop would proceed to the

object queue, which served as a list of objects currently instantiated in the application, all

needing to have initial values and programmatic changes recognized. The game loop then

worked its way through the object queue, item by item, recognizing changes made by

scripts using codelets in each object’s event queue. Once the game loop completes a

cycle, it repeats until the user closes the user interface, exiting the program.

 38

3.2.3 The pCSDT User Interface

Figure 3.3: The Cornrow Curves simulation

When the pCSDT user interface opens on the computer screen (Figure 3.3), it

reveals a series of panels organized from left to right. The left most panel contains tabbed

panes that contain the building blocks that student users will use to construct their

projects. Each tab in the panel contains building blocks called codelets that are grouped

by function. Placing the codelets in one panel, grouped by function, maps directly to the

‘toolbox metaphor’ as is used in the human computer interaction literature [60].

Immediately to the right of the codelet panel is the scripting panel, where the

codelets are assembled into small programs. The output window is located to the right of

the scripting panel and occupies the majority of the user interface. The output panel is

where all the action happens as the user created script is executed. In addition, there are

two smaller panels underneath the output panel, which list the objects that have been

created in the interface (lower left), and their initial values (lower right).

The codelet panel has tabbed panes that are color-coded and labeled ‘Event’,

’Method’, ‘Controls’, ‘Operators’, ‘Variables’, and ‘Sensing’ (Figure 3.3). Each panel

 39

contains codelets, the same color as the label on the tab pane that performs particular

functions. The group of codelets, within each pane, perform similar functions within the

scripting system. Similar to a toolbox, a user accesses the appropriate panel, drags the

desired codelets into the scripting panel, and attaches the codelet to those already in the

panel. By assembling the codelet building blocks in a particular order, the user writes a

small program. When the user clicks the ‘run’ button, the result of the script will be

displayed on the output panel.

The green Events pane contains codelets designed to respond to user interface

events. For example, the Events panel has a codelet entitled ‘On Begin’ that responds to

the User Interface (UI) event of clicking the ‘run’ button. Once a user clicks on the ‘run’

button in the UI, this triggers the event queue, which systematically works its way

through all of the objects currently created in the system. For each object, the system

finds the event ‘On Begin’ and sequentially executes all of the codelets attached to it.

This systematic path through the event queue creates a loop, updates the attributes of

each object, and displays these updates in the output panel.

The blue Methods panel contains codelets designed to set the attributes

programmatically for each object currently created in the system. The method codelets

expose these attributes to the user, allowing those attributes to be altered during script

execution. As the event queue is processed, following the click of the ‘run’ button, and as

each ‘On Begin’ codelet is located for each object, the methods attached to the ‘On

Begin’ codelet are executed in sequence. This execution updates the system values for

each attribute in the codelet, such as color values or Cartesian plane coordinates. These

changes are then reflected in the update to the output window.

The orange Controls panel contains codelets that allow the user to incorporate

traditional programming concepts, such as looping for a fixed number of times, forever,

or while a condition holds true, as well as conditional execution. These control codelets

allow the user to alter the sequence or ‘flow of control’ within the script execution.

Changing the flow of program execution in the scripting panel is very similar to what

happens in a traditional programming language.

The yellow Operators panel contains codelets that allow the student to use

relational operators to create condition statements for the event stack to test for

 40

conditional script execution during the execution loop. These relational statements can

incorporate system variables such as object attributes listed in the orange Sensing panel

or user-defined variables created in the pink Variables panel. The Sensing panel lists

object attributes that have their initial values set through the Starting Values panel, and

those initial starting values are programmatically changed during script execution by the

method codelets.

In addition to the panels described above, there is also a button bar above the

output window. The button bar contains buttons that users click to perform certain

actions. The most important action from the point of view of the user is the ‘run’ button.

Clicking the ‘run’ button toggles the button to ‘stop’ and sets the system Boolean values,

such that the game loop begins updating the interface by including the object queue in its

cycle through the system objects. A second click of the ‘stop’ button sets the toggle back

to ‘run’ and the game loop stops updating the interface by excluding the object queue in

its cycle. Next to the ‘run/stop’ button is a button for erasing the output image, loading a

background image, making the goal image panel visible, making the user interface go full

screen, and lastly, saving the output window as a graphics file.

3.2.4 Cornrow Curves Simulation

The Cornrow Curves pCSDT application followed a very popular, robust, and

well thought out CSDT that simulated the cornrows hairstyle. The initial work of

translating between the knowledge of braiders and the simulation had already been done

before I arrived. As such, it was a straightforward task to take the already completed

design work from the CSDT and simply convert it into a pCSDT. Figure 3.4 shows an

early version of the Cornrow Curves pCSDT. The interesting thing about this picture is

that it offers us a glimpse at what the early pCSDT interface looked like. As noted above,

the Cornrows application code was written in Java classes that sat on top the Core

classes. Therefore, with little exception, what is shown in Figure 3.4 is the work of the

Core classes. Consider that what the Cornrows Java classes contributed were the specific

method codelets in blue, and the graphic ‘Y’ that is the plait image.

 41

Figure 3.4: Early version of Cornrow Curves simulation

My work on the Cornrows applet involved solving software issues that were

occasionally made visible through usability testing. In addition, I worked on converting

the drawing methods to allow for animation of the plaits. Maintaining the Cornrows’

code often meant making minor (and major) adjustments to the application code, as

changes and upgrades were made to the Core code. The interesting thing about working

on Cornrow Curves was that it was the first pCSDT applets that I felt I really knew

comprehensively.

Each of the pCSDTs had their own idiosyncrasies and Cornrows was no different.

For example, the first plait was in a data structure all by itself, and so changes to the

methods that affected the appearance of subsequent plaits needed to be applied to the first

plait. Likewise, calls to the reset method that occurred when the user clicked ‘clear’

needed to be applied only to the first plait, because all of the other copies of that image

that made up the braid were deleted from the data structure that contained them.

 42

Figure 3.5: Final version of the Cornrow Curves simulation

Animating the braid was an interesting challenge, seeing that the OpenGL output

window wrote all changes to the screen at once, which meant that the whole braid would

just simply appear in one pass of the game loop. Creating the appearance of animation

involved indexing the plait copies with a variable that determined when the plait should

‘appear’ on screen, and then saving the copies in a data structure for when they were

needed. The data structure for the screen would be populated with plait objects at the

beginning of a game loop, calculated all at once for when to appear, how long to appear,

and at what location. Then, as the game loop cycled, plaits would be displayed when and

where (as already calculated), based on the number of the game loop. Like actors waiting

their turn off stage, when the appropriate game loop occurred, they were summoned on

stage to play their part.

The Cornrows applet has an interesting feature that not all of the pCSDTs offer.

Cornrows allows the user to import a graphics file to replace the plait image in the

simulation. This ability allows for ‘braids’ using, amongst other things, the faces of

friends, sports equipment, pets, or other familiar images. There is a tension at work here:

on the one hand, simply providing a blank slate and allowing other artifacts to be loaded

 43

into the software and used runs the risk of being overrun by corporately created media,

gun violence, and a whole host of undesirable content. On the other hand, forcing

students to remain within a narrow domain we define can restrict their creativity. The

goal is to find a happy medium where we offer positive directions to begin with, but

allow them the freedom to take their own path after that. These issues are discussed at

length in chapter 4 of the work.

3.2.5 Kente Cloth Simulation

I had the good fortune for being involved with the Kente Cloth pCSDT from the

very beginning, when we visited Ghana in the summer of 2011. Unlike the cornrows

simulation, I was involved with the initial research to determine what math and

computing ideas could be gleaned from discussions with the indigenous designers. The

design considerations for a Kente Cloth simulation pCSDT were greatly informed by the

time spent talking with Richard Bonsu (see Ethnographic Case Study 1 in 3.4.1). As is

clear from the first attempt at a Kente simulation in Figure 3.6, the image in the output

window does not do justice to the fabric showing in the Goal Images panel (same figure,

upper left). Richard provided me with a complete understanding of how he went about

his craft, including explaining the different patterns of Kente that he weaves, and he

helped me to develop an appreciation for the time commitment that each creation

requires.

In working through the design considerations, it seemed clear that the simulation

should be arranged so that the output window would contain only the first quadrant of the

Cartesian plane. Students would locate their blocks of color in their virtual weaving using

only positive numbers for the X and Y coordinates. However, when we consider the

complexity of this tool, it seems that the majority of the work performed by students is

limited to reading the Cartesian plane coordinates and then iteratively creating blocks of

color in the output window using loops and other control codelets.

 44

Figure 3.6: Early version of the Kente Cloth simulation

In Figure 3.7 there is a screen shot of an earlier version of the Kente Cloth

weaving simulation software. This version used Java2d circles to render the ‘weave’

pattern in the output window. As it turned out, this was a huge software engineering

mistake because although it worked with a sufficiently robust modern laptop computer,

there were far too many objects for a netbook computer of only moderate capabilities to

handle. This version of the software turned out to be incredibly slow and a big

disappointment to our student software testers at the junior high school in Ghana (see

sections 5.3.2 and 5.4.1 for more on the Kente Cloth simulation).

 45

Figure 3.7: The final version of the Kente Cloth simulation

The Kente Cloth application shown in Figure 3.8 is the final version of this

software. The output image rendering uses OpenGL ellipses to simulate the vertical and

horizontal aspects of the ‘weave’. This version of the software was much faster than the

original Kente Cloth version and was considered a success with students at the junior

high school in Ghana where the software was tested in the summer of 2013.

3.2.6 Adinkra Simulation

I also had the great fortune of being involved with the Adinkra stamping pCSDT

from the very beginning, interviewing master textile artisan Gabriel Boakye initially in

2011, and then presenting him with our version of the software in 2012. The interview

with Gabriel was very similar to the one that I conducted with Richard in Bonwire for the

Kente Cloth simulation (see 3.2.5 of this work). Gabriel was very generous with his time,

showing us the ink making process, how stamps are carved, and even showing us how to

stamp our own Adinkra cloth patterns.

 46

I was able to determine from the interviews with Gabriel that the Adinkra

stamping simulation would be more valuable as a pedagogic tool if we focused on the

geometry present in the Adinkra symbol shapes. Many Adinkra symbols feature

representations of a logarithmic spiral, as was pointed out long ago in professor Eglash’s

African Fractals text, and present a perfect opportunity to leverage the mathematics

involved as a form of cultural capital for African American students in the United States.

The simulation of such symbols would be a challenge, as stated previously we would

need to hit the “sweet spot” of fidelity to the craft representation, mathematics at the

appropriate grade level of difficulty, and keeping the scripting difficulty within

Vygotsky’s ZPD.

Having the big question answered concerning the primary focus of the simulation,

there were still many little questions that came out of our initial interview with Gabriel.

Because of the mathematical challenges inherent in simulating shapes such as logarithmic

spirals, it seemed that also having to negotiate all four quadrants of the Cartesian plane

would be a nuisance to students. Thus, it seemed clear that all the action of the simulation

should take place in the first quadrant. There were still unanswered questions. We

wondered if we should animate the appearance of the Adinkra symbol in the output

window, or have it appear all at once, as it would if it were an Adinkra stamp. It seemed

to us, that in order to maintain fidelity to the practiced craft, having it appear all at once

would be best. However, in the end, we decided that animating the appearance of the

Adinkra symbol would be a lot more interesting to students.

 47

Figure 3.8: Early version of the Adinkra stamping simulation

Figure 3.9 is a screen shot of an earlier version of the Adinkra stamping

simulation software. This version used Java2d circles to render the stamp pattern in the

output window. Thankfully, this version of the software never actually beta tested with

student users. If it had been, it would have certainly overwhelmed the capacity of

moderately powered netbooks to calculate all of the circles that made up the image (see

5.4.1 for the effect of Java 2d circles). In the end, this version was scrapped because it did

not properly render the image in the same way that an Adinkra craftsperson would have

produced one, as the output image looks much more like a weave than a stamp.

 48

Figure 3.9: The final version of the Adinkra stamping simulation

 Figure 3.10 shows the final version of the Adinkra stamping pCSDT applet that

we deployed on the CSDT website. We follow the development of this pCSDT using

ethnographic developer stories in section 5.4.2 of this work. In addition, we report on an

experiment conducted using the successor to this pCSDT, called CSnap, simulating

Adinkra in chapter 6.

3.3 Human Computer Interaction and the pCSDTs

In addition to the software development effort for the pCSDTs, this work has

involved a great deal of human computer interaction research. The HCI aspect of this

research has focused primarily on user stories, as their experiences shape both the needed

debugging of the software as well as the programming direction. This exploratory use of

the pCSDTs, at the time considered in beta release, helped to quickly point out

difficulties in the software design that were able to be addressed much sooner than would

have been possible otherwise. From an HCI perspective, it is especially important that we

consider user mental models and cognitive loading.

 49

3.3.1 Mental Models

Mental models are “conceptual organizations of information in memory [61]”,

that allow us to develop additional inferences about what we understand. [62] Mental

models are not new, and have been studied and discussed quite extensively over the

years. The understanding of the mental model representation is to help us imagine how

we apply previously learned concepts to new, unfamiliar concepts, which result in

extending our understanding. When we consider how users react while using our

software, mental models are extremely important because they help to inform us of the

user’s frame of reference.

The mental model that most computer users bring to their interaction with

computer software is that of the desktop. All operating systems offer some analog of the

physical desktop, from graphical icons of stacks of documents, to the trash bin where

objects are removed from the system. The desktop metaphor for operating systems allow

users to instantly feel at home when using their computers, allowing them some intuition

about how system objects on the screen can be expected function, similar to those in the

real world.

When the pCSDT tools open, the user is immediately greeted with small objects

that look like puzzle pieces. These puzzle pieces provide the user with some intuition that

they snap together, to build larger objects, in this case small programs. Where most

graphical user interfaces in operating systems have their design based on the desktop

metaphor, the pCSDTs have as their design base the ‘Toolbox’ metaphor. They also bring

to the tool a preconceived notion about how tools fit in a toolbox and how they can be

organized by function.

The desired outcome for the pCSDT user is to learn new concepts in mathematics

and computer science. This learning amounts to the extension of their existing mental

model to incorporate the tools that they used to construct their onscreen artifact. A

successful outcome will be one in which the user extends their mental model of the initial

toolbox of the user interface to include the new tools used in building the onscreen

output. Based on student interaction with the ‘Repeat While’ control codelet, for

example, they will have developed a mental model thought process similar to, “If I

construct a condition, the codelets placed inside the ‘Repeat While’ will execute only

 50

while that condition remains true, and when that condition becomes false, the changes

being executed will stop. I will observe this start and stop on screen in the output

window.” The proper graphical feedback then is crucial. It is based on this feedback that

the student will succeed in validating their new extended mental model of how these

programming concepts work. If the UI responds in an unexpected or incorrect way, the

user will fail to validate their new mental model and will not learn the new concepts.

The student’s success or failure in learning programming concepts (e.g., the use

of control structures, variables) requires that the designers of the user interface walk a

very fine line between design that outright instructs and one that allows for user

exploration. This is the creative tension that we, as developers, need to be careful to

balance in this type of educational software. If the tool is too difficult, the student will

become frustrated and give up. If the tool is too easy, then the student will become bored

and will miss potential learning opportunities. An additional strategy in this UI tuning is

to find ways to reduce the cognitive load that the users face from other interface

elements.

Mental models also play a large part in how crafts people understand and practice

their crafts. The interviews with Gabriel and Richard (sections 3.2.5 and 3.2.6) revealed

to me, how very different Kente Cloth weaving and Adinkra stamping are from each

other. The difference between the complexity of Richard’s mental model concerning

Kente Cloth and Gabriel’s mental model of Adinkra seemed very striking to me. They

were both processes, but the orders of magnitude of complexity involved seem to make

them ‘different’ kinds of processes. Richard needed to hold lots of information in his

head for the different types of weave patterns he regularly created. Gabriel, on the other

hand, it seemed, did not need to maintain nearly as much information in his mental model

for his Adinkra craft.

3.3.2 Cognitive Loading

As stated previously, the developer of the tool needs to walk the fine line between

concealing the complexity of the underlying software behind codelets that do more, at the

risk of reducing learning opportunities for the user and possibly making the tool boring to

users. The alternative is to expose more complexity in the underlying software by

 51

designing codelets that do less, at the risk of increasing user frustration with a design tool

that has become much more complicated in its use. In addition to the level of cognitive

complexity chosen for the codelets, there are additional ways to reduce cognitive

complexity to support user learning.

In the considerations that have been discussed throughout our design efforts for

the pCSDTs, the most important has been to support the user in whatever way we can,

without diminishing the opportunity for student learning. The user interface design

considerations that have helped in this support has been the selective display of

information, in particular, the availability of codelets through the use of panels, and by

further limiting the display of codelets to those belonging to the currently selected object.

This limitation of codelets reduces the cognitive load for the student, which makes

available to them only the current relevant codelets from which they have to choose in

constructing their program script.

When the UI starts, it loads a default set of objects and the scripts created for that

set of objects. The scripts use codelets that are from the Methods panel for each object.

At this point, some small demonstration program is available to run, getting the users

‘feet wet’ in how the tool works.

From here, the user can then customize the default script, extending its

functionality and thus extending the output results in a desirable fashion in the output

pane. With the UI starting with an active object selected, the method codelets available to

use for that object, and a small script made from those codelets, the universe of possible

scripts has been limited to a much more readily understood starting point. Color-coding

for control, method, and event codelets easily allows the user to identify which panel will

contain additional similar codelets for use in extending the script further.

As the user gains familiarity with the scripting panel and the already displayed

codelets, the time will come to expand the creation, and the student will create additional

objects. Each object is selectable through the object listing, and upon selection, the

relevant codelets will populate the method pane for use in that objects scripting panel.

The user has already gained familiarity with the method codelets and scripting panel of

the first object, therefore starting work on another object should feel comfortable to the

user. This familiarity reduces the cognitive challenge to simply understanding the new

 52

codelets presented that, perhaps, were not available in the first object. In addition,

familiarity at this level will probably encourage the student to begin exploring the control

and operator codelets to create additional, more interesting designs. This progressive

disclosure of codelets helps to reduce cognitive load by limiting the interface elements

that are visible to the user at any one time, to only those elements that are relevant to the

task capable of being performed [63].

Another way the UI assists users through reducing cognitive load is to provide on

screen scaffolding in the form of (possibly) familiar tools such as Cartesian grids for

object placement in the output screen. When the pCSDT is not in the ‘running’ mode, a

Cartesian grid appears over the output, and all objects are returned to their initial

positions. This grid then allows users to more easily see where in the plane their object

should be placed, based on the ordered pair location possible within the Cartesian grid.

When the tool is in ‘running’ mode, the grid is no longer drawn, and thus, it does not

appear in the final output of the artifact.

An interesting way that the UI can be used to create motivation in a student is to

provide goal images. True to reducing cognitive load, these images need to be purposely

selected before they appear in their own separate window, but once they are available,

they provide a valuable resource for the student as they create their own design.

Sometimes a student does not have sufficient motivation to create a design entirely on his

or her own. However, a great deal can be learned through reproducing a design. In

addition to the reproduction of the design, there can also be the challenge of reproducing

a design efficiently, or more efficiently than a competitor. Team design can result in a

deeper understanding of the tool than just a single person struggling through one’s own

efforts.

Using tutorials is another way that the UI can be used to assist in the reduction of

stress in the cognitive load of learning a new tool. Tutorials can provide small toy scripts

that behave in typical ways to get the user started in building their own designs, and they

can be used to communicate both basic functions as well as more complicated scripting

techniques. Tutorials can be especially helpful when the tool has exposed more of the

complexity of the underlying software to the user, thus helping to build familiarity with

 53

the program. Seeing how those codelets function within a tutorial can reduce user stress

and help users learn the codelets abilities more quickly and effectively.

3.4 Ethnographic Studies

3.4.1 Case Study: Adinkra Stamping

Gabriel Boakye, Ntonso, Ghana 2011.

On a visit in 2011, to Ntonso, a small village in Ghana, I met with Gabriel

Boakye, an Adinkra craftsperson of many years. Gabriel has his own shop by the side of

the road that runs through his town, which he and his extended family operate, selling

their Adinkra stamped fabrics to tourists. We were there as part of a research group from

RPI, and Gabriel taught the entire group about his craft. He began with the process of

making the Adinkra ink, which he does with the help of his family.

Adinkra ink is made from the bark of the Badie tree that grows in the north of

Ghana. The bark is shipped to him from the north, and he processes it into ink. First, he

trims the outer bark off the bark pieces using an enormous machete. Once that is

complete, the bark is put into a giant mortar and beaten with a pestle until it is broken up.

This part of the process is a lot of work; the pestle is heavy and needs to be lifted

overhead and slammed down on the bark repeatedly. Once the bark has been broken up,

it then looks more like a red fibrous material than bark. It is placed into a large barrel that

is filled to the top with water so that the fibers can soak. After a couple of days of

soaking, the water takes on a thin reddish color. At this point, Gabriel cooks the bark

water down, which gradually thickens the liquid, and as it thickens, it turns black. The

bark water cooks over an open fire in close proximity to the families’ living quarters. It is

easy to see that their source of income could easily have detrimental effects on the

families’ health.

Gabriel’s brother, Paul, is in charge of carving the Adinkra stamps. Gabriel tells

us that each of the stamps has its own unique meaning, and that people combine different

stamps on a cloth to tell a story or convey a message. Adinkra has its origins in the

funerary arts, with the idea that if you stamp a message on a cloth, the departed family

member will see it and know what you are trying to say to them. The Adinkra stamps are

 54

carved out of the calabash gourde. Paul has carved many Adinkra stamps in his lifetime,

and on the day I visited, he had close to a hundred available for sale, all arrayed in neat

rows on a table next to the hanging Adinkra cloth that is, likewise, available for sale.

We each bought Adinkra stamps from Paul, brought them over to the large table

where we were able to make our own Adinkra cloths using the stamps we just purchased

and strips of fabric that were available in piles on a table. Gabriel and his family make far

more money on the Adinkra cloth that has been pre-stamped, but if there is enough foot

traffic, the ‘stamp your own’ business is nearly as good. The entire operation is really a

family affair, where younger members of the family benefit from selling the blank pieces

of fabric for use in the ‘do it yourself’ stamping area. Older family members each have

their section of the hanging display areas for the pre-stamped products.

3.4.2 Case Study: Kente Cloth Simulation

Richard Bonsu, Bonwire, Ghana 2011.

On a visit in 2011, to Bonwire, a small village in Ghana, I met with Richard

Bonsu, a Kente Cloth weaver with many years of experience. Richard works in a Kente

Cloth cooperative weaving and retail shop just off the main street that passes through

Bonwire. The local economy was not doing as robust as had been in the past, as there

were far fewer European tourists passing through town than usual. Richard suspected that

this was due to the current state of the economy. However, he wasn’t completely certain,

though he did know his income was down, and his cost for supplies (thread and such)

were going up. As I talked with Richard, it became clear to me that because of the lack of

customer traffic, he had plenty of time to spend with me, and I greatly appreciated his

willingness to do so.

Richard and I talked at length about how he did his weaving, sitting at a loom that

had the warp threads extend approximately 20 feet from where he sat. He informed me

that the pieces of Kente cloth that I saw hanging from the walls around me, were all

composed of individual narrow strips, sewn together to make larger pieces of cloth. The

length of the individual strips ran between 3 and 5 feet depending on the size of the cloth

that he had in mind to make. Each strip would be bound off when it was completed and

then it would be cut to match the length of several other strips in preparation for the

 55

sewing together to make the larger fabric. As he worked, he rolled up the completed

strips of fabric on a spindle as he continued to weave the next strip.

I asked Richard how he decided what design to make. Richard responded that it

was important to maintain a selection of different designs, and he knew what would sell

from his years of experience. He went on to tell me that each design has a name, he was

currently working on “Your Hearts Desire,” which seemed to incorporate geometric

figures in purple, pink, and blue. Other patterns were called “No One Man Can Rule a

Country”, “Education is a Better Choice”, and “Fathia Nkrumah”. The “Fathia Nkrumah”

was a beautiful design done in black, green, and gold threads in honor of the first

Ghanaian First Lady, Fathia Nkrumah.

I asked Richard how he managed to keep track of where he was in the pattern on

which he happened to be working. Richard responded that it was very easy for him by

stating, “I keep it in my head”. I pressed, “Really, but it seems so complicated, and the

strips come out so exact when they are seen sewn together, you wouldn’t know that the

strips are separate pieces of cloth.” Richard responded, “Yes, I know, I have been

weaving for many years, and often the same pattern, so I just know, I have it in my head.”

I asked him if he counted how many stitches or used anything to help gauge the size of

the pattern. He said no, he used to when he first started many years ago, and he might

count now if he got distracted but really, “he has it in his head.”

This first encounter with Richard was very interesting to me. As a Kente Cloth

weaver, he created many different patterns, and clearly, he was very skilled at his craft.

However ‘he had it all in his head’, according to our conversation, which seemed difficult

for me to believe. I knew this would immediately be the difficult part in building a Kente

Cloth weaving simulation. How would I ever manage to capture the particulars of the

weaving simulation, if it was all ‘just in Richard’s head’?

Thinking about this for a long time following our first meeting, I began to grasp,

even if in just a glimpse, the model of the craft that Richard maintained all in his head.

This mental model of weaving, which clearly had made the craft second nature to him,

would not be suitable for simulation. The challenge of accurately recreating Richard’s

mental model of weaving would be enormously complicated and would not likely yield a

 56

pedagogical tool that would be useful to students. I needed instead, to concentrate on just

the physically observable process itself.

Richard Bonsu, Bonwire, Ghana, 2012

I met up with Richard in the same weaving cooperative as I had the previous year.

He immediately recognized me, smiling and calling me ‘Professor’. As we talked, it

seemed that he had plenty of time to share, and I was once again very grateful for his

willingness to spend his time talking with me. I opened my laptop and showed him the

Kente Cloth software on which I had been working. He seemed genuinely astonished that

anyone would have an interest in creating a computer simulation of his Kente weaving.

I demonstrated the software, dragging codelets into the scripting panel and clicked

‘run’, which created a color block of ‘weaving’ in the output window. I immediately

knew that he thought something was wrong by the expression on his face. Still very

happy that someone thought his weaving was important enough to simulate on a

computer, but ever so reluctantly, he stated, “That’s not how my weaving works,

Professor.” “My weaving starts from the bottom and goes up the threads, that weaving

(pointing to my screen) shows wherever you put it.” I replied, with “Ah, yes you are

right. We talked a lot about how you weave. We decided that it would be very difficult to

show the weaving the way you do it – so difficult that we were afraid that students might

give up and stop using the program.” “Yes, I see” was Richard’s response.

The Kente Cloth pCSDT offered the opportunity to explore the mental model of

the expert crafts person, in order to gain an understanding of their perception of their

craft. In the case of Richard, his mental model was so complex that we had to scale back

our efforts to duplicate his exact understanding of the craft in our representation of it a

software model. As mentioned above, this negotiation of fidelity to the craft

representation, and usability by the student is not always easy to balance and sometimes

takes enormous effort to ‘get it right’.

 57

3.5 Conclusion

As we have seen in this chapter, ethnocomputing requires that we focus on the

various aspects of ‘computational thinking’ within the construction of cultural practices

and indigenous craftwork. We have examined the history and development of the

programmable Culturally Situated Design Tools as an example of ethnocomputing

software. In particular, I have focused on the pCSDTs that I have worked on for my

research, namely the Cornrow Curves, Kente Cloth, and Adinkra stamping. These Java

applets have offered the opportunity to examine the development process of a set of

robust applications from concepts to deployed applications specifically designed to teach

‘computational thinking’.

We explored the process of eliciting the understanding of the craft we want to

simulate in our development work using mental models. The craftsperson’s

understanding is likely to be very complex, especially if the craft itself is complex and

practiced largely from memory alone. Gaining the understanding of a craft from the

practitioner’s point of view is extremely helpful when it comes time to create a

representation in simulation. However, sometimes this mental model may be too complex

for use in a simulation for students, requiring negotiation to find what we like to call the

‘sweet spot’ for our software. This is a place where the software that we build is faithful

to the craft as practiced, where the simulation is tuned to an appropriate challenge for

students, and where the simulation is of pedagogic value to instructors.

We have chosen to restrict many of the pCSDTs, at least in the user’s initial

encounter, to images that are appropriate in our effort of fidelity to the craft in simulation.

Not all programming environments similar to the pCSDTs believe this to be desirable, in

fact many do not. We call this ‘anything goes’ approach the content agnostic position and

it is the subject of the next chapter.

 58

4. CONTENT AGNOSTIC POSITION4

4.1 Introduction
 Since the introduction of LOGO in the 1960s, educators have been creating open-

ended, “sandbox” style computational media; what Mizuko Ito has labeled the

“construction genre” of educational technology [65]. Examples include MIT’s Scratch,

CMU’s Alice, UC-Boulder’s AgentSheets, and a wide variety of similar systems.

Advocates of this approach, in particular Seymour Papert, frame these technologies as a

means for allowing learners to teach themselves [66]. We are generally in agreement with

Papert and his colleagues: our empirical studies, detailed below, suggest strong

advantages offered by this bottom-up, constructionist framework, in contrast with the

usual top-down, “instructionist” approach of many “edutainment” products. Our analysis

also supports their contention that constructionism resonates with broader themes of self-

empowerment and democratic politics [67]. However, we find that this emphasis on self-

directed learning is often accompanied by an unacknowledged assumption that any

technology which supports constructionism must effectively act as a blank slate or empty

container; and that its designers must remain “agnostic” as to the content that learners

create.

This “content agnostic” position, we contend, can have some disadvantages that

are detrimental to students’ development of computational and cultural literacies.

Through a review of several case studies, we illustrate the possibility of alternatives that

combine a “content aware” medium with a similar bottom-up, self-directed learning

approach. Our goal is not to eliminate the content agnostic position, but rather to provide

an opportunity for educators, designers, and theorists to reflect on its otherwise invisible

presence within the construction genre, and to consider alternative approaches when

appropriate.

Scratch serves as an exemplar for educational technology that is constructionist in

design and deliberately content agnostic. Teachers can use Scratch to make class

assignments that are not content agnostic, and ordinary users in the online Scratch

This chapter previously appeared as: M. Lachney, W. Babbitt, and R. Eglash, "Alternatives to the content
agnostic position in the 'Construction Genre' of learning technology," Computational Culture: A J. of
Software Stud., submitted for publication.

 59

community can group themselves together in “studios” that have some specific content in

common. But the designers of Scratch have attempted to make the software itself as

general and flexible as possible, and to impose as little influence as possible in terms of

content. We recognize that this content agnostic position emerges out of positive goals: to

nurture a sense of being a producer rather than a consumer; to encourage more genuine,

intrinsic motivation for learning rather than extrinsic rewards such as game points; to

give youth a voice from the bottom up rather than instruction from the top-down; and to

help foster the general sense of free expression that is fundamental to an open society.

Yet, we find that this approach tends to turn a blind eye towards the pervasive influence

of social forces that can limit children’s development and silence alternative material and

perspectives.

We begin with an examination of potential disadvantages to the content agnostic

position. Using case studies of individual Scratch projects, we will review four categories

of potential disadvantages. In particular evidence for the strong influence of commercial

products calls into question the stated Scratch claim of making students “producers rather

than consumers.” As a way of mapping possible alternative frameworks, we suggest an

analytic separation between the two dimensions of interest: the spectrum between content

agnostic and content awareness is on one axis; the spectrum between top-down

instructionism and bottom-up constructionism is on the other. Since these can be treated

as orthogonal axes, the impression that one can only choose between a content-agnostic

approach and an instructionist system is a false dichotomy.

We then review possible alternatives, with a final focus on our experiences using

Culturally Situated Design Tools (CSDTs: www.csdt.rpi.edu). While CSDTs also offer a

bottom-up, constructionist approach to math and computing education, they highlight the

cultural capital of indigenous and vernacular knowledge (Native American beadwork,

urban graffiti, etc.) and foster their exploration as a computational medium. In contrast

the content agnostic approach, in which such cultural references are typically restricted to

the presence of a “content provider,” the CSDT’s “ethnocomputing” approach locates the

computational thinking in the cultural practices themselves (for example the algorithms

used by traditional native bead workers). Under what circumstances that may or may not

be more effective in teaching computing and raising interest in computer careers is a

 60

http://www.csdt.rpi.edu/

more complex set of questions; our purpose here is merely to “decenter” the content

agnostic approach, which is often presented as the only possibility for constructionist

learning, and show that there are viable alternatives that offer advantages which are rarely

considered in the literature. We conclude that it is possible to maintain the tenets of

authorship in constructionism--the valuable sense of free agency in knowledge

construction and artifact building--while also supporting cultural connections that are

often not readily available to students, and may hold particular importance for

underrepresented ethnic groups.

4.2 Potential Disadvantage to the Content Agnostic Position: Four
Categories

 Potential disadvantages to the content agnostic position fall into 4 categories. We

will list these from what we see as the category of least concern to that of the greatest

concern.

4.2.1 Use of Inappropriate Material

We regard this as essentially a solved problem, insofar as any teacher allowing

their students the freedom to write an essay, paint a picture or author a website would be

faced with similar instances in which they have to weigh freedom of expression against

offense to other viewers. Even the strongest advocate for a content-agnostic approach

recognizes that some adult supervision and intervention is occasionally needed. The

designers of Scratch have been admirable pioneers in developing scalable systems that

allow peers, mentors, and/or teachers to “flag” inappropriate material, which often

obviates the need for more intense forms of intervention and supervision.

4.2.2 Tendency to Gravitate Towards Violent Video Game Formats

We recognize that there are a wide variety of perspectives on this controversial

topic. Perhaps the best empirically supported research has been by Olson et al. [68], an

extensive study in the Harvard Medical School’s psychiatric program, which concluded

that there is little evidence for any increase in real, physical violence based on exposure

to violent video games. We are less concerned with risk of violence, and more concerned

 61

with the phenomenon of “gravitate.” In the parlance of nonlinear dynamics, violent video

games form a basin of attraction, which draws users towards their commercial material.

There is a distinction between healthy play that may legitimately include violent elements

as part of a “free-flow” creative repertoire [69], and the commodified forms of violence

that commercial content encourages, which may take the place of creative acts that could

make a better contribution to the users’ personal and intellectual development.

Figure 1 shows an image from a Scratch user1. While the icon of a realistic gun

image is no doubt inappropriate for a young user, this falls under category “a” above: use

that will likely be eventually flagged as inappropriate by the community or by a Scratch

system administrator. As shown to the right of that icon, the actual games this user has

created are based on stick figures and other low-barrier animation components; they are

so abstracted that it would be difficult to claim any strong resemblance to commercial

video games. Despite the visual reference to a real gun and to “first person shooters”

much of the activity resembles the ordinary “sociodramatic play” that is often cited as a

psychologically healthy activity [70].

Figure 4.1: First person shooter projects in Scratch

 At the other extreme, Figure 4.2 shows a series of games created by another user.

These projects consist of graphic images imported from the commercial video game

Halo. The difference in comments received by Scratch users with self-created images,

1 We have changed the names and modified the images slightly to preserve anonymity

 62

versus the utilization of commercial first-person shooter images from games such as Halo

(particularly in the more realistic images such as the “Halo assault rifle” below), is

striking. Responses such as “Nice work bro -- its beast” attest to the ways that both the

Halo images and the language of response are recognizable tokens for a specific sense of

masculinity that rewards these commodified forms of violent fantasy [71]. Although such

networks of users may be only a small percentage of the total, we hypothesize that in

such cases Scratch has essentially become “colonized” by the varieties of commercial

video games that reinforce hegemonic masculinity, and thus may suppress healthier,

alternative forms of masculinity (e.g. [72]). We now move to consideration of

commercial “colonization” more generally.

Figure 4.2: Additional projects from Scratch users

4.2.3 Tendency to Gravitate Towards Commercial Content in General

 The user in Figure 4.2 produces just a few of the hundreds of Halo-inspired

Scratch projects; a brief search turns up dozens of users creating these works: Halo

Zombie Defense 2, Halo reach firefight, Halo FPS shotgun, etc. One user alone lists

thirty-seven Halo-related projects he created. These are not entirely negative: this

appropriation and remixing of commercial content creates learning opportunities for

computational skills and concepts, and the network of like-minded users offers

motivation, camaraderie, and a social learning context. On the other hand, these

 63

contributions also show generic conventions -- gender stereotypes, excessive militarism,

etc. -- that stem from youth-oriented commercial culture. Beyond commercial gaming

products, Scratch projects and studios yield a high amount of other media franchised

brand name traffic: dolls such as Bratz and Strawberry Shortcake; popular characters

from Power Rangers, Care Bears and My Little Pony, fast food outlets such as

McDonald’s Happy Meals, fashion items such as Adidas and Air Jordan sneakers, etc. A

search for Barbie on the Scratch community site leads to a list of hundreds of animations,

art, games, music, and stories all featuring the easily recognizable characters of Barbie

and friends.

The reality is that these commercialized products, advertisements, and media

commodities stands in strong contrast to Papert’s idealistic vision: that constructionist

learning media will allow ideas by children-designers to be born out of their own unique

creative imagination, to come “from wherever fancy is bred [67]”. Surely he did not have

in mind that it would be bred in a corporate boardroom. In category 4.2.2 we noted that

the problematic aspect of violent video games may not be violence itself, but rather its

presence as a basin of attraction. Similarly, we recommend caution against a hasty

conclusion that Scratch projects featuring highly commodified objects will always

convey psychologically damaging or negative properties. Scratch projects do sometimes

use irony or humor with these objects, and several scholars have documented the ways in

which self-conscious semiotic play can subvert gender roles and passive conceptions of

readers/viewers [73]-[75]. But the majority of the Scratch projects focused on toys, fast

food, violent video games and other marketing schemes appear to be simple celebrations

of the commodities, and even those that offer an ironic take are still caught in the basin of

attraction that brings so many projects to focus on commodified cultural forms, at the

cost of cultural alternatives that can better contribute to children’s social and

psychological growth.

 Sociologist Beryl Langer refers to the products of global corporations such as

Mattel, Hasbro, and Disney as “commoditoys” – toys that propagate their consumption

meme across cartoons, movies, fast-food outlets, clothing, and a seemingly endless

variety of add-ons, accessories, and other media [76]. Ferguson documents the ways in

which Langer’s commoditoys “implicate children in a collective trance, inspiring or

 64

strengthening a subconscious belief in the mythic powers of capitalism [76]”. One need

not be against the concept of free enterprise to find something objectionable in the

commodification of childhood. While constructionist literature correctly describes

Scratch’s advantage in “turning kids from media consumers into media producers,” that

characterization ignores a secondary level of consumption: they are now “producers” of

what are often essentially commercials for commodities. It is this secondary level of

consumption that is made invisible by the content agnostic framework.

4.2.4 Differential of Computational Complexity between Commercially and Non-
Commercially Engaged Projects

 In our review of Scratch projects, we have found that there seems to be an inverse

relationship in computational complexity between projects that engage with commercial

content and those that engage with alternatives, such as heritage or social critique. For

example, the project “Black History,” offers an animated overview of the Brown vs.

Board of Education case. When we examine the scripting necessary to create the simple

slide show used to tell the story, we find one script with a very small number of codelets,

only one of which involves control flow (“wait” for timing the images). In comparison,

the stick figure games in Figure 4.1 use up to 15 separate scripts with a vast intricacy of

control loops, conditionals and other features. This seems to be a fairly consistent

pattern: as if technical proficiency and culturally significant content are in a zero-sum

game. But of course they are not so in the abstract, so why do they appear so in practice?

All four of the categories above--inappropriate material, violent video games,

commodified content, and the reduction in complexity--are admittedly the result of the

users’ environment and complex social influences, not an inherent property of the

software itself. Given this fact, we imagine that an advocate for the content agnostic

position might reply that the goal of Scratch is simply to teach computing, and that it

provides an unbiased platform in which users must bring their own personal goals and

cultural judgments to bear on their development of computational literacies. Such

arguments are essentially making an analogy to the concept of free speech in a political

system: it is true that no thoughtful advocate for democracy would start placing

 65

restrictions on free speech with the misguided goal of improving its content. But in our

view, a better political analogy would be the issue of campaign finance reform.

Since its origins in 1867, many US legislators have proposed that we limit the

amount of funding that the wealthy can use to influence elections. Such legislation is

controversial; there are always complaints that restrictions on campaign donations will

violate free speech. However, the Supreme Court recognized in Austin v Michigan

Chamber of Commerce (494 U.S. 652, 1990) that the government did have an interest in

protecting our democracy from the “corrosive and distorting effects of immense

aggregations of wealth that are accumulated with the help of the corporation and that

have little or no correlation to the public’s support for the corporation’s political ideas

[77].” The strong influence of marketing and other dominant forces on Scratch is

analogous to the influence of wealth on an election. The problem is not that free speech

should be restricted, but rather the question of how “freely” ordinary citizens can be

speaking, if the other side is empowered by the enormous resources of corporations:

wealth, focus groups, advertising campaigns, market penetration, branding, and so on.

Thus, we need alternatives to the content agnostic position, one that can “level the

playing field”. As software developers, we cannot control exterior social influences, but

we can modify attributes of the learning medium, as discussed below.

4.3 Constructionism and Contextualism as Orthogonal Dimensions

Our thesis is that constructionism and the content agnostic position have been

erroneously presented as a single phenomenon, resulting in only two possible endpoints

along a single spectrum. Once we separate these into orthogonal dimensions, new options

arise. Figure 4.3 shows these separated dimensions using examples in math and

computing education.

 66

Figure 4.3: Two orthogonal dimensions

At opposite ends of the vertical axis we have the constructionist vs. instructionist

distinction that has been the focus of Papert and his colleagues. On the horizontal axis,

we introduce the spectrum from content agnostic to content aware. Thus, there are four

possible categories, not just two. How did the impression that there are only two

categories emerge from a broader history of the construction genre of educational

technology?

From the development of the LOGO programming language in the 1960s and its

evolution into “Turtle Geometry” [78], [79], to popular 21st century constructionist

design tools [17], [80], [81], information technologies have been utilized as avenues to

offer a digital sandbox for young children to develop mathematical and computational

thinking. Much of the conceptual basis for this approach originates in the learning

psychology research of Jean Piaget, who framed the development of cognition in terms of

four main stages that build towards increasing levels of abstraction. Piaget’s theory of

 67

cognitive development describes learning in terms of assimilation of new information

into current cognitive structures, followed by the eventual development of those

structures as they “accommodate” from the repeated assimilations [82]. For Piaget,

children must move linearly through four “developmental stages: sensorimotor,

preoperational, concrete operational and formal operational [82].” However Papert and

others have taken less dogmatic approaches to these stages (which is fortunate since they

did not hold up in further investigations; e.g. [83]). We will follow the popular

convention of educational technologists in referring to Piaget’s original theory as

“constructivism” and Papert’s more pluralistic conception of child development as

“constructionism.”

 According to Piaget, by the age of six children are able to think concretely about

objects and things in their world, and to problem solve through processes of trial and

error, but it is not until the age of twelve that the abstractions of formal thinking are

possible [84]. Concerned with issues of “epistemological pluralism” Turkle and Papert

[85] subvert Piaget’s operational hierarchy of development. They posit a more flexible

understanding of “concrete”2 versus formal thinking as not fixed developmental stages

but rather alternative and institutionally legitimate ways of knowing. Papert and Turkle

draw on a variety of sources for this alternative. One is Evelyn Fox Keller’s [86] study of

Barbara McClintock’s Nobel prize-winning genetics research, showing how the

development of “a feeling for the organism” can sometimes reveal aspects hidden

by abstract formalisms. Another is the feminist critique of moral psychology by Carol

Gilligan [87], showing that girls’ tendency towards contextual interpretation of rules is

not a developmental lack but rather “a different voice.” Most importantly, they described

the work of K-12 and college students in programming and IT, showing that preferences

for less formal programming styles were not necessarily barriers to technical success. In

this way, Papert alters Piaget’s biologically fixed developmental model in favor of a more

bottom up model of scaffolded learning based on the access and availability of

computational materials.

2 Their terminology of concrete/abstract is perhaps misleading: in the case of different programming styles,
both are pure code and in that sense equally “digital abstractions.” A better characterization might be
bottom-up -- structuring code organically by iterative experiments -- versus top-down; planning out a
hierarchical decomposition of components.

 68

 Simultaneous with this emphasis on providing cognitive scaffolding came an

emphasis on discovery learning. From the point of view of Papert and others, these are

not two separate domains, because the essential meaning of “discovery” implies starting

from a prior set of skills and knowledge, which would likely be more concrete, embodied

or experiential. However, it is not the case, from Papert’s point of view, that one can

simply “mix and stir” concrete learning and bottom up discovery, as he describes in this

passage:

What can be done to involve the mathematically alienated child? It is absurd to

think this can be done by using the geometry to survey the school grounds instead

of doing it on paper. Most children will enjoy running about in the bright sun. But

most alienated children will remain alienated. One reason I want to emphasize

here is that surveying the school grounds is not a good research project on which

one can work for a long enough time to accumulate results and become involved

in their development. There is a simple trick, which the child sees or does not see.

If he sees it he succeeds in measuring the grounds and goes back to class the next

day to work on something quite different [88].

 In other words, measuring the school grounds may be more concrete, but it lacks

“recursive depth” [89]; the possibilities for self-generative expansion. Papert contrasts

this simple measurement of school grounds with learning from pattern generation on the

computer screen via LOGO, which “if worked on with a good dose of imagination,

indicate the sense in which there are endless possibilities of creating even more, but

gradually more, complex and occasionally spectacularly beautiful effects [78].” Thus, the

computational medium becomes, in a recursive fashion, its own learning context. He

makes this explicit in his 1980’s introduction to the text Mindstorms:

But to say that intellectual structures are built by the learner does not mean they

are built from nothing: to the contrary, children appropriate to their own use

materials they find about them, most saliently the models and metaphors

suggested by the surrounding culture... When I speak here of "our" culture... I am

 69

not trying to contrast New York with Chad. I am interested in the difference

between pre-computer cultures (whether in American cities or African tribes), and

the “computer cultures” that may develop everywhere in the next few decades

[78].

 Thus, Papert’s computational constructionism did not ignore cultural influence,

but it did imply that African villages, the American inner city, or similar environments

where computers were unlikely to be found in the 1970s were lacking potential for

children’s self-development of computational thinking. In contrast, any place with

computers (no matter where geographically) could best support children exploring the

endless possibilities by which simple patterns can elaborate upon themselves. The

computer, in this view, is not merely a medium by which math and computing become

exploratory tools, but also a purification device [90] by which we can “siphon off” the

irrelevant aspects of African or American culture and allow children to directly

experience the raw stuff of science; a direct yet playful engagement with nature’s laws of

math and computation. Indeed, a common critique of constructivist pedagogical models

that maps on to Papert’s approach to computer education is made by popular educators in

the global south who argue its theoretical and practical oversights in the preservation of

indigenous knowledge systems are based on Western assumptions about linear and

industrial progress [91].

Papert’s tragic accident in 2006 prevented his further direct involvement in

constructionist technology development. As an editor for Socialist Review in the 1950s,

he was not naive about the power of capitalism to colonize our lives, but his political

commentary in “Perestroika and Epistemological Politics” [67] indicated that by the

1990s he saw the authoritarian tendencies of centralized government control to be at least

as much a problem, and (rightfully) took pride in the resonance between bottom-up

constructionist learning media and anti-authoritarian political critique. This critique is a

powerful means to champion humanitarian principles such as the free speech guarantees

of the first amendment, but difficult to apply to problems such as the imbalance between

the speech of individuals and that of media corporations.

 70

The Scratch learning environment developed not only from the influence of

Papert’s constructionist learning framework, but also the era of social networks and peer-

to-peer media sharing. Michel Foucault uses the term “rarefaction” [92] to describe the

phenomena by which the theoretically infinite utterances of an articulating subject are

reduced to a remarkably predictable pattern that conform to the needs of dominant power

structures. This process of rarefaction is another way to conceptualize the basin of

attraction towards commodified forms of youth culture that is in contradiction to Papert’s

vision for an intellectually free and creative computational medium.

Thus the rise of a content-agnostic position, which envisions only a single

dimension of instructionist versus content-agnostic constructionist environments, can be

attributed to at least 3 influences. One is a vision of the optimum in computationally

creative medium as that which supplies its own “cultural” content -- in the words of

Sharon Traweek, a “culture of no-culture”-- in which nature’s universal laws of math and

computing can be playfully elaborated and scaffolded upon itself [93]. Another is the

political atmosphere in which violations of human rights by centralized governments

brought anti-authoritarian critiques to the fore. Finally, there is the fact that Scratch exists

in a media ecology that offers its users easy access to the signifiers of commodified youth

culture, an access not foreseen in Papert’s original vision.

4.4 Content-Aware Learning: Examples from Culture-Based and Social
Justice Based Math Education

 In the case of Scratch, learning can take place without bias towards specific

content because the scripting platform it provides is teaching computational thinking

regardless of which images are used, which narratives are explicitly or implicitly

supplied, etc. Such content-agnostic media is possible for many educational disciplines.

Software such as Geometer’s Sketchpad and GeoGebra can create any geometric form;

Algodoo is similarly a general-purpose physics “sandbox.” In contrast to these content-

agnostic forms, “content-aware” learning media is designed to provide students with a

kind of “value added” orientation or valence. Normative values such as social justice,

environmental values regarding ecological sustainability, conscious consideration of the

ways gender is encoded, and cultural connections, particularly to the backgrounds of

 71

underrepresented students, are all ways in which designers of learning media can take a

content-aware approach.

 The idea of content-aware STEM education has become increasingly important in

state and national education standards. For example, the Next Generation Science

Standards, created through a partnership from the AAAS, NRC, and the National Science

Teachers Association has recommended that rather than teach STEM education strictly

though abstract universal principles, science education should include contextual

connections, with “the goal that all students should learn about the relationships among

science, technology, and society [94]”. In particular they highlight the approach of

González et al. [95], who demonstrated improvements in science education practices by

incorporating local knowledge from home and community. The integration of content on

sustainability with STEM education has also been a growing movement, as can be seen

for example in the National Association of Biology Teachers’ position statement [96].

The National Council of Teachers of Mathematics standards has emphasized that the

“opportunity to experience mathematics in context is important” and thus “students

should connect mathematical concepts to their daily lives, as well as to situations from

science, the social sciences, medicine, and commerce [97].” The Computer Science

Teachers’ Association has similarly supported content aware approaches to computing

[98].

 The use of cultural, social and environmental context in STEM education is thus

an important category for content-aware learning media3. As implied by Figure 4.3, it is

possible to take both instructionist and constructionist approaches to content-aware

media. A useful illustration of this distinction can be found in ethnomathematics.

Although initially defined in the context of indigenous societies [99] it quickly expanded

to include ancient non-western state societies (Egyptian hieroglyphics for example),

mathematics in vernacular culture (e.g. calculations by push-cart vendors; quilters, etc.),

and even historical and sociological investigations of professional mathematicians.

 One variety of instructionist versions of ethnomathematics pedagogy can be

classified as “number base systems.” Different cultures use different bases for counting;

for example Mayan hieroglyphics show a base-20 system with a sub-base of 4, and this is

3 It is not the only category possible.

 72

easily converted directly into lesson plans [100]. That is not to say that it is impossible to

develop a constructionist approach using this material, but a quick Internet search will

show an enormous number of “Mayan math” worksheets available to teachers in which

students are simply translating between our decimal (base-10) system and the Mayan

vigesimal (base-20) system. A similar category is that of culture-based word problems.

As in the case of using number systems from different cultures, using word problems

from different cultural scenarios also runs the risk of trivialization; replacing Mary and

Susie counting marbles with Juan and José counting bananas [101]. Zolkower describes

her frustrating experience in attempting to interest New York students of Puerto Rican

heritage in math word problems that referenced ancient civilizations of South America,

under the presumption that both qualified as “Latino” [102]. The presence of these

instructionist approaches to culturally specific content is surprisingly common; the

ubiquity may be partially due to the fact that it requires very little modification of

standard math lessons, and little distraction or additional labor for the already-

overburdened math teacher to add on this kind of shallow “cultural” veneer.

 This shallow gesture towards “multicultural math” bears little resemblance to

scholarly ethnomathematics research. For example, Ascher’s [99] description of the

Native American game of Dish goes beyond a mere cultural example of probability. In

the Cayuga version of the game six peach stones [103], the stones are blackened on one

side, are tossed in the air. The outcomes are recorded by the number of times the peach

stones land black side or brown side up. The Cayuga traditional point scores for each

result rounded to the nearest integer, are inversely proportionate to their probability: it

appears as if they were calculated. Ascher does not claim that is the case; rather she

notes that this accuracy can emerge, as Eglash relates, because of how the game is

embedded in community ceremonies, the people’s spiritual beliefs, and their healing

rituals; especially through their concept of “communal playing”. Rather than attribute

winnings to individual players, this communal playing attributes them to the group

[103]. Another ethnomathematics analysis for this accuracy in Native American

probability [104] is the figure of the “trickster” who acts randomly in myths and legends,

and relates randomness in games of chance to horticultural practices that maintain a

diversity in plant genetics to match the randomness of environmental fluctuations. Thus,

 73

ethnomathematics research offers a correspondence with western knowledge of

probability while situating it in relation to a rich set of cultural practices, rather than

reducing it to a decontextualized algebra or word problem.

 However, translating this research into classroom lessons is a difficult challenge.

If a student is already alienated from classroom work, expecting them to read a complex

text to gain an understanding of these deeper connections is unlikely to succeed. Thus,

one advantage of constructionist approaches to ethnomathematics is the possibility of

using the creative, engaging elements that Papert and his colleagues have rightfully

emphasized to allow for this deeper engagement with underlying cultural and technical

meanings. Lipka et al. for example developed a set of culture-based lessons for native

Alaskan students, which fully embraced both constructionist and content-aware

approaches. In the control group, observing standard lessons as they had always been

taught, they found that “the students were to find the perimeter of various geometric

shapes (e.g., a girl, a butterfly, a house) on graph paper... mostly in silence [32].” There

was also an opportunity for the students to calculate the perimeter of their own, hand-

drawn figures.

 In contrast, in their experimental group they observed that in the exercise on

measuring perimeter in the culture-based Building Fish Racks module “the children were

able to see that only certain sizes of rectangles would be appropriate for a fish rack. They

knew this because they saw fish racks in their village on a regular basis [32]”. Their

constructionist approach to perimeter concepts made use of this cultural knowledge to

scaffold meaningful measurement activities; it had “recursive depth” in the sense that

prior experiences became the basis for successive activities and explorations in the

geometry of design and measurement, which include a new appreciation for the role of

mathematics for indigenous culture (for example finding out how elders used body parts

as measurement units). As a result there was statistically significant improvement in

pre/post test score for this experimental group in comparison to their control group [105].

 It is worth comparing this to the earlier quote from Papert regarding a similar

example of measuring the dimensions of artifacts in local surroundings, which he

criticized: “surveying the school grounds is not a good research project on which one can

work for a long enough time to accumulate results and become involved in their

 74

development [78].” The phrase “involved in” gets to the heart of the matter. If measuring

the school grounds is insufficient for this deeper sense of involvement, then what is?

There is no doubt that commodified content can create a sense of deep involvement:

video game enthusiasts show their life-long brand loyalty with tattoos for Grand Theft

Auto, and “shopping haul” videos in which consumers showcase their purchases has been

one of the fastest growing trends on YouTube [106]. However, this is not the kind of

“involvement” that contributes to the social, ethical, and intellectual strengths of a

developing child. An awareness of the content is needed, even if that is simply guidance

from a caring instructor. But it is also possible to build that content awareness directly

into the medium itself.

 A content aware approach to computer literacies can aid young people's cognitive

and emotional development of community and self; including a healthy understanding of

ethnicity and racial identity [107]. Healthy self-conceptions can vary greatly; from

students who see ethnicity as central to those who do not. There is however, substantial

evidence in developmental research and experimentation to suggest that negative racial

and ethnic stereotypes have significant impact on student performance. Altschul et al.

[108] demonstrate that the connection one feels to their immediate racial-ethnic

community, awareness of the racial attitudes of others, and the larger ethnic in-group

community’s attitudes and values towards school are significant indicators of academic

success. This is to say, when negative stereotypes of a group exists and are not actively

resisted, salient group membership is “disruptive to performance” [108] -- but there are a

wide variety of resistance strategies. A dynamic view of racial and ethnic identity, and

media that can accommodate the wide variety of strategies and heterogeneous

conceptions of race [109] is thus better taken to avoid culturally deterministic educational

practices.

 Another reason for using a culture-based approach is the myth of genetic

determinism; the false conception that underrepresented students are incapable of

academic performance at comparable levels as their peers because of genetic differences

in neural structure [110]. There is no evidence supporting this, and much to the

contrary. For example, after the occupation of Germany at the end of WWII there was a

population of illegitimate children of black and white soldiers who were raised by their

 75

white German mothers [111], found no black/white IQ differences in this group: not

surprising since they were raised in identical (German) environments. More recently

similar results were found for black children raised by white mothers in the US [112]. But

the myth is not harmless: studies of “stereotype threat” do show that African American

students fair worse on standardized tests than their white counterparts, when they believe

the test might be reflecting some ethnically determined intelligence [110]. In other words,

the myth of genetic determinism can result in a potent self-fulfilling prophecy.

Demonstrating complex mathematical and computational thinking as part of the heritage

culture for underrepresented students is a potential counter to this pernicious falsehood.

 That is not to say that connections to heritage culture are the only legitimate path

to this sense of deep involvement. Vernacular culture such as graffiti, breakdancing and

similar practices can also be part of youth-produced creations. They too are subject to

commodified forms — in today’s world what isn't? — but it is not difficult to train youth

to recognize the distinction. Providing students with the tools to analyze forms of

commodification and exploitation can be just as important to the constructionist

repertoire. For example, Eric Gutstein’s work over the course of two years in Latino

middle schools in Chicago applied a Freirean approach to problem-posing pedagogy in

mathematics [38]. The content of Gutstein’s work emerges out of students’ lived

experiences of gentrification and racial/class segregation in their neighborhood using the

constructionist goals of open-ended learning. As Freire explains, “problem-posing

education affirms men and women as beings in the process of becoming—as unfinished,

uncompleted beings in and with a likewise unfinished reality [113]”.

As Gutstein’s classroom and others become spaces to perform and learn about social

justice through mathematical modeling, students begin to form their own questions and

conclusions about what parts of society are equal/unequal, racist/not racist, just/unjust,

etc. A hallmark of constructionist learning is that the students are free to contradict the

teacher, and indeed Gutstein notes that students often came to conclusions that

contradicted his views: “educators need to be explicit in their views while at the same

time... [respecting] the space for others to develop their own [114]”. At the same time,

Gutstein acknowledges the delicate balancing act between offering students research

topics that bring issues of social justice to the fore, and the potential for discouraging

 76

them if they feel the problems are too overwhelming [115]. The goal is a learning process

which “poses to students their life condition not as immutable but merely as challenges...

upon which people can act and change [38]”.

4.5 Content-Aware Constructionist Learning in Computer Science
Education

 As in the case of Gutstein’s work in mathematics, it is possible to use a

constructionist approach to social justice-based computer science. Ryoo et al. [116] and

Scott and White [117] describe curricula in which underrepresented high school students

used a variety of electronic media to investigate -- in open-ended, constructionist fashion

-- issues at the intersection of social structures (the “subject positions” of race, class and

gender) and quality of living for groups organized by those structures (health,

employment opportunities, etc.). For example, Ryoo et al [116] noted that in one

students’ reflection on her health game she “described her realization that her aunt’s

obesity was affected by complex factors beyond diet and exercise, including the

intersection of her aunt’s low-pay/low-status job, high crime neighborhood,

inaccessibility to healthy food options, and her family’s material needs as contributing

factors in her struggle toward a healthy lifestyle [116]” (quoting from Lee). As in the case

of Gutstein’s social justice-based math education, “the program impact was because of

the culturally responsive practices (asset building, reflection, and connectedness)

embedded within the curriculum [117]”, not because of the digital media itself. This is by

no means a flaw -- surely committed teaching by well-trained instructors is the ideal --

but it does create challenges for scaling up such programs.

 It is possible, however, to build a content-aware approach directly into the

underlying structure of constructionist learning media: such media would have the

potential advantages of easier scaling (like any web-accessible media), facilitating the

ability of instructors to add the desired social values, and -- even in the case of users

without instructors -- it could offer a counter to the forces of commodification critiqued

earlier. This is the case for the suite of applets we have designed and tested, Culturally

Situated Design Tools (CSDTs). Similar to the concept of ethnomathematics, the basis

for this “ethnocomputing” [118] is the idea that there is already computational knowledge

 77

in these cultural practices: iterative patterns in Native American beadwork; recursive4

applications of transformational geometry in African American cornrow braiding

patterns; polar coordinates in urban graffiti, etc. In the case of indigenous knowledge

systems there is potential for opposing the myth of genetic determinism and, in both

cases, the potential for opposing the myth of cultural determinism.

 The process of creating CSDTs begins with interviews with artisans, videos of

their practice and “reverse engineering” of their designs; these are used to create a

quantitative model that attempts, as closely as possible, to reflect the cognitive and

behavioral processes of the artisans in their social context. This is important because

simply imposing computational thinking externally would not have any impact on the

myths of genetic determinism (one cannot argue for the presence of computational

thinking prior to colonialism) and might also detract from its effects on myths of cultural

determinism. In the case of Native American beadwork, for example, we found that the

concept of two orthogonal axes embedded in the rows and columns of the bead loom

resonated with deeper cultural themes that were also organized by four-fold symmetry:

native languages using base four counting; teepees made with four base poles; prayers

offered to "the four winds;" etc. Interviews with artisans also revealed the use of iterative

patterns; “up one over one” to create a 45 degree angle for example. The resulting model

-- iterative patterns on a Cartesian grid -- is not something a beadwork artisan would

immediately tell you (in fact, most artisans begin these discussions by either saying “it

can’t be explained, you just have to learn it with your hands“). But neither is it merely

imposing alien math and computing. It is, rather, a sort of “composite picture” of the web

of computational thinking that is in both the cultural background and the individual

artisan’s thinking and behavior.

 The next step is in creating a graphical interface in which these indigenous or

vernacular concepts and practices can be easily manipulated to create the traditional

patterns. Some compromise has to be made between faithfully reproducing the artisan’s

concepts and behaviors, creating an interface that is easy and intuitive for children, and

satisfying the teacher’s need for relevance to the curriculum. In the cornrow braiding

4 Here we are using “recursive” in the sense of “circular feedback of information” rather than in the coding
sense of calling a procedure that calls itself. Whether or not such circular information flow is implemented
as recursion or iteration in the coding structure is beside the point.

 78

simulation, for example, we need to use the parameter of “translation”--a term from the

standard school curriculum -- to set the distance between each of the Y-shaped “plaits”

that make up one braid. But since the plaits are usually scaling in size as you move along

the braid, the translation distance has to scale as well. Therefore, this CSDT sets

translation as “percentage of image width” -- that way students do not have to create a

separate variable and modify its magnitude, which would be a significant barrier (a

“steeper learning curve”) to new users. Interestingly, braiding stylists also place the

distance between plaits using a visual estimate of plait size ratios, so quantifying this as

percentage actually brings it closer to the artisan’s “emic” view. It was striking seeing

this connection in action when we observed that students with prior experience doing real

braiding sometimes began their simulation using a small plait and scaling by a percentage

greater than 100: students without that experience always scaled down. Since many

students did not know that it is possible to have a percentage greater than 100; this was a

helpful illustration for how cultural knowledge could be leveraged as mathematical

understanding.

 In much of the literature on multicultural education (including ethnomathematics),

the motivation is described by what we might call the reflection theory: the need for

creating lessons in which the student’s cultural identity is reflected in the math or other

content. Millerick for example suggests that, “by framing instruction to align with

students’ cultures, teachers can use curriculum that honors each students’ life experiences

[119]”. While that is true in some cases--the above example of prior braiding knowledge

for example--we have not found the reflection theory to be a good framework for

understanding the variety of learning possibilities and potentials in our experiences with

CSDTs. Evaluations have shown statistically significant increases in controlled studies of

both math and computing skills as well as interest in computing careers [120]. But given

a choice between the CSDTs from a variety of cultural origins -- fractals in African

architecture, breakdance movements, etc. -- students do not show a strong correlation

between their heritage culture and the tool they select. How to explain this contradiction?

 One problem with the reflection theory is that it frames each student’s identity as

singular, unified and static. This is a poor model, as identity is constantly in a process of

being constructed, especially in youth. Anthropologist Bourdieu provides a better

 79

framework with the concept of “habitus,” which allows for multiple proclivities, habits,

expectations, etc. that constitute identities as dynamic and multidimensional. An

individual’s habitus, in Bourdieu’s formulation, is still strongly influenced by social

structures -- working class kids learn to value blue-collar ways of being -- and the social

structures are in turn created by those individuals. In this aspect it is similar to Willis’s

[121] classic on “how working class kids get working class jobs.” But Bourdieu also

provides a theory of social change: “the systematic exploration of the unthought

categories of thought that delimit the thinkable and predetermine the thought [122]”.

Thus habitus leaves open the possibilities for agency, interpretation and contestation:

what is sometimes referred to as “reflexivity” [115]. This combination of habitus and

reflexivity holds up well in empirical studies of youth identity [123], [124].

 Stressing reflexive freedom too much makes cultural identity seem trivial or too

easily malleable. Thus, the content-agnostic position implies that the identity of

“consumer” is easily transformed to that of producer -- “Scratch turns children from

media consumers into media producers” -- despite the evidence that much of the

children’s construction is filled with forms and practices of commodification. At the

same time, stressing deterministic, unitary models of identity--as we have found in some

of the literature on multicultural education -- also leads to poor predictions. Viewing

identity as more multidimensional and flexible -- a constant negotiation between creative

invention and structural influence -- helps to explain why underrepresented youth might

respond positively to a broader array of cultural connections. A website that makes the

case for sophisticated math and computing concepts from African, Native American,

Latino, and urban vernacular practices is in itself a kind of symbolic representation of an

anti-racist stance. As a set of design tools, it offers the attraction of what Pollock [125]

terms “everyday anti-racism”: not the heroic role model of Martin Luther King but rather

a supportive environment in which mixtures of agency and identity can be creatively

explored and developed.

 Bringing together the “pluralist” constructionism of Papert with Bourdieu’s

concept of habitus helps to illuminate how a content-aware constructionist medium like

CSDTs can facilitate underrepresented students’ capabilities in bringing together

computational elements, cultural hybrids and technological appropriations. For example,

 80

Navajo Rug Weaver is a CSDT that draws on the “embedded” geometry and algorithmic

processes found in the weaving and design of Navajo Rugs [21]. Like Scratch, students

develop computational capital as they drop in and build with codelets to perform

functions that aid in the design of Navajo rug patterns. Yet, unlike Scratch, students who

use the CSDTs couple the acquisition of computational capital with explicit expressions

of their own cultural capital. It is our opinion that making students aware of the cultural

capital that they already possess but of which they may be unaware, is the important

difference between the content agnostic and content aware approach.

 Furthermore, Navajo Rug Weaver is designed to be appropriable by students

beyond the imitation or even variation of traditional designs. Like the rest of the CSDTs,

a software development and pedagogic goal is to emphasize its flexible design aspect in

ways that “allow students to utilize a synthesis of math, computing, and culture in

creative expression [120]”. While the Navajo Rug Weaver obviously uses situated

content, the software enables students to engage in self-making design activities that

extend beyond the situated content and rugs themselves. For example, consider a group

of high school students using the Navajo Rug Weaver. Some of the students’ designs

were imitations or variations of the weaves. Students’ finished products reveal the

importance of their own culture for motivating the design process. One students’

description reads, “I wanted to get the 4 colors of the directions so once I got them I

added the four hills. I added the purple background to represent my clan, water flows

together” (Figure 4.4).

Figure 4.4: Simulation by Navajo student showing use of traditional motifs

 81

The design and narrative indicate that this student is able to build with the CSDT

platform in such a way that nurtures the cultural capital he shares with his community,

while exploring its computational capital; thus fostering computational literacies.

However, it is important that the tool allow students to go beyond the imitation of the

situated content. Other student designs reveal the appropriation of the tool for interests

that are explicitly not part of Navajo culture. Without this ability, the tool would be

vulnerable to charges of essentialism, rendering CSDTs as culturally deterministic.

Another Navajo student, for example, explained how she used the Rug Weaver to make a

design using the colors of the Jamaican flag. Yet her design still made use of traditional

symmetries.

Figure 4.5: "Jamaican Summer Nights"

 This example helps to illustrate the synthesis between the guidance of situated

content and the openness of the construction genre. First, students are given a sandbox

like platform that allows them to build artifacts and designs from the bottom up through

what Eglash et al. [120] call “deep design” - the exploration and discovery of indigenous

math and computing practices in social context. We previously discussed this in the case

of four-fold symmetry in the virtual loom: not merely a trivial consequence of practical

necessity, but rather a pervasive cultural theme that resonates with cosmology, healing,

architecture, etc. Students review this cultural connection before using the applet; thus,

the Navajo weave simulation is carried out in a context supporting these deep

connections between math and culture. The fact that the student above chose to apply the

colors of the Jamaican flag shows that it is sufficiently open-ended; the fact that it is the

Jamaican flag and not, say, the colors of a McDonald’s sign, suggests that there is a kind

 82

of alternative basin of attraction around culture, just as Scratch has a basin of attraction

around commercial content.

 Finally, we note the work of one Navajo student whose design description

indicates a reflexive and critical turn. She describes the design in Figure 4.6 as follows:

Figure 4.6: "Clash of Civilizations"

The Clash of Two Worlds represents the western civilization coming in connection with the Diné

Culture. When the two worlds collide in the center, it is an intermingling of cultures. Almost bliss,

like Nirvana. A sharing. An understanding or an invasion? The connection creates an explosion

that neither worlds can control. Our secrets burst away from us. Our culture, our respect, integrity,

morals, our life explode in every direction. Leaving an emptiness [58].

On the one hand, a critic could regard this as an example of failure; a case in which the

culturally situated approach is revealed to be discomforting or exploitative. But

discussions with the students did not reveal such views; students were enthusiastic about

the idea that Navajo traditions include mathematical and computational thinking. Thus

the design is better understood as adhering to Papert’s original vision: constructivist

learning should be an opportunity for free speech, which by definition would include the

ability to make critiques of the speech platform itself. It is perhaps analogous to an

American artist who reminds us of the meaning of constitutional rights by burning the

American flag.

 83

 Thus, the explorations are not limited to the situated content itself. Students

continue to design in ways that meet their own creative ends and goals. Moreover,

students are actively involved in creating negotiations between their own knowledge

structure and that of indigenous math and computational knowledge. This negotiation

enables a dynamic view of culture as something that is continually changing and being

worked on at the everyday level. While CSDTs are content specific, they are by no means

a static tool that drives students into creating homogeneous deliverables. They foster

students’ sense of “design agency” in open-ended negotiations between people, nature,

and computers [54]. Both CSDTs and the work of Lipka, Gutstein and others offer

avenues to rethink the regime of content agnosticism that currently subsumes the

construction genre. As the CSDTs demonstrate, considerations of content aware

educational technology does not necessarily indicate instructionism; there is a third

alternative in which it can support explorations of historically and culturally relevant

material in a constructionist way.

4.6 Conclusion

Without a doubt, the rise in the construction genre of children’s technology and

software enables teachers to expand and legitimize epistemological diversity in the

classroom. Scratch and other platforms provide students with open-ended design tools

that motivate authorial engagement with math and computational thinking. Yet, the

coupling of constructionism with a content agnostic position can result in a basin of

attraction for commercial content. The enormous amount of content involving violent

video games, fast food outlets, commoditoys and other commercial products can be

viewed as obstacles to Papert’s original goals of bottom-up autonomous learning. In other

words, corporatism has such a deep reach into all facets of youth culture that the content

agnostic position allows the construction genre to be colonized by those entities. This

should be actively confronted in critical and creative ways.

This is not to say that content agnosticism is always negative, only that the

gravitational pull of commercial culture needs to be recognized as a significant force in

the lives of children, and that we need not leave them unarmed in resistance to its tug.

Educators, software and technology designers, and others should not give up the authorial

 84

and democratic learning goals that surround the construction genre. In our view, these

goals continue to provide important trajectories for re-thinking education in the 21st

century. This is especially important in the age of No Child Left Behind and Race to the

Top, which mandate a shift toward a national curriculum that results in homogeneous

styles of teaching and learning, while demanding ‘accountability’ be measured by means

of standardized test scores. In addition to technological scaffolding of democratic politics

in the classroom, attention to content is a way to situate learning to create culturally rich

and relevant lessons for students.

We can learn from critical pedagogies in ways that acknowledge the lived content

of students’ socio-economic and political realities, and draw on innovations such as

ethnomathematics and ethnocomputing to offer exciting opportunities that draw on

students’ heritages and youth cultures in content specific ways. Balancing this content

with open-ended constructionist goals, as with the CSDTs, invites students to creatively

engage the connections between STEM knowledge and cultural knowledge, so as to

make their own cultural capital more available to them as “things to think with”; and thus

develop new ways of extending this capital. CSDTs are just one of many possible ways

of approaching the future of constructionism in ways that enable an evolving view of

inclusive educational practices. It is important that constructionism, in both theory and

practice, continue to reinvent itself as much in its aspirations for positive social impact as

in its technological sophistication.

 85

 5. FORMATIVE DATA ANALYSIS5 6

5.1 Introduction

In chapter 3 I described some features of the initial iteration of pCSDT design

process. In this chapter, I detail the user experiences with the programmable Culturally

Situated Design Tools as they relate to our formative data analysis, and describe how that

feeds back into our development process. It is important to note that observations of

students and developers' experiences with the pCSDTs were collected under a protocol

approved by the Rensselaer Institutional Review Board (#998), and with the consent of

all parents/guardians, the consent of the schools that allowed the data collection, and the

assent of all students involved in this analysis. In our formative evaluation, we primarily

use a qualitative analysis of these developer and user experiences gathered by the use of

ethnography.

Each of these tools -- Cornrow Curves, Kente cloth and Adinkra stamping --

presented unique challenges to the software developer working on the design and

implementation of the program code. First, as we shall see in the ethnographies, meeting

the fidelity expectations of the representation of the craft or practice was especially

challenging. The development challenge involves negotiating what are often two

opposing forces. First, we want to meet the expectation that the simulation will present

the craft or practice as it is done in the physical world, and perhaps more importantly, as

conceptualized by the artisans, since the purpose is to convey how this indigenous

practice embodies indigenous math or computing concepts. Second, we need to keep the

interface tuned to a level of usability that prevents students from becoming frustrated

while using the software.

Another challenge encountered during the development effort of the Cornrow

Curves, Kente, and Adinkra simulations involved design decisions about the extent to

which the software should be flexible and extensible. It is vital that we make the correct

Portions of this chapter previously appeared as: W. Babbitt, "An analysis of the programmable Culturally
Situated Design Tools from an HCI perspective," presented at the 3rd Annu. Symp., Theory and Research
in HCI, Troy, NY, USA, 2012.
Portions of this chapter previously appeared as: B. Babbitt, D. Lyles, and R. Eglash, "From
ethnomathematics to ethnocomputing," in Alternative Forms of Knowing (in) Mathematics, S.
Mukhopadhyay and W.-M. Roth, Eds., ed Rotterdam, The Netherlands: Sense Publishers, 2012, pp. 205-
219.

 86

decisions about how flexible, extensible, and to what degree of complexity the user

interface provides for the student. From a birds eye perspective, we want the software to

be easily approachable, that students can begin working on creating a simulation

immediately, with a minimum of instruction, as Resnick describes with his 'low floor'

metaphor [48]. At the same time, we want the software to be flexible enough that

students to do not get bored quickly in using it, and extensible enough that it facilitates

user creativity, Resnick's 'high ceilings' notion [48]. All the while, we want to try our best

to avoid the pitfalls of the commercial colonization of the user space that we detailed in

chapter 4.

Finally, we show how the program design gradually takes shape through the

"Agile" iterative development model. The agile method that we examined in chapter 3

has been crucial to the success of the project. Each design tool is quickly made into a

working prototype in the software development process; this enables data gathering and

user feedback to be collected early in the work, to feed back into the design process. This

approach reduces the amount of valuable time pursuing solutions that end up either not

working or prove to be a bad fit pedagogically in the solution.

5.2 The Use of Ethnography

The use of ethnography in software development and human computer interaction

(HCI) can mean different things to different people, and the term can vary in both scope

and breadth in its use when we talk about HCI relationships. Using an ethnographic

approach in HCI design can mean to gather qualitative information about the tasks that

users perform with a computer system [126]. Using an ethnographic approach in HCI

design can also be about the way in which researchers approach the gathering of this user

information. Furthermore, it can be about how individual users perform specific tasks. In

general, we can consider ethnographies to be ‘stories’ that recount the experiences of the

user’s interaction with a computer system that can then be used to understand and

improve the use of that system. For developers, ethnography represents 'stories' that relate

how the software came to be as it is, detailing problems and approaches to solutions for

those problems.

 87

Gathering ethnographic stories for both the use and design of the pCSDTs has

required keen observation. Verbal statements may not always match what the developer

or the user is actually feeling or thinking [126]. The study participant may not be able to

adequately communicate his or her feelings or thoughts to the ethnographer in a way that

will be understood. In this ethnography work, we have attempted to adopt the participant-

observer role [126] where we became an active participant while recording observations.

The goal of these participant-observer ethnographies has always been to better inform

design decisions to improve the stability, usability, and pedagogic value of the pCSDTs.

5.3 Ethnographic User Stories

The ethnographic stories gathered from the users of the simulation software can

focus in different areas. Ethnographies that focus on the scripting interface will provide

us with valuable information concerning the efficacy of the tool in teaching computer

science topics such as iteration, conditional program flow and algorithmic thinking.

Ethnographies that concentrate on the output window, will allow us to infer if the tool is

effective in knowledge transfer by answering such questions as ‘did the user produce an

artifact that demonstrates the use and understanding of the mathematics or computer

science concepts?’ Ethnographies on specific portions of the software interface can tell us

about these different software elements depending on where our interest resides.

Stories gathered from user experiences provided crucial information in

determining the appropriate level of complexity for the scripting interface. For example,

an early question that arose in the development process was how much of the calculation

for generating a logarithmic or linear curve on the screen should be shown to the user,

and how much should just simply be handled “behind the scenes.” One possibility was to

put a disk image on the screen and then leave it to the user to write a script that iteratively

overlaps disks into paths of curves. However even using our own team members as the

“users” (especially those coming from a social science background), we found this to be

too challenging. Had we chosen that design trajectory, the script to create the curve

would have needed to involve the use of variables and complex calculations. It quickly

became clear the complexity of the ‘dot’ approach was not desirable from a user point of

view, and we opted for a codelet that placed a spiral on the screen with ‘in-place’ values

 88

that could be easily adjusted to create the desired image. This example demonstrates the

types of decisions made during the development of the interface. These decisions were

often difficult, but it was vital that we get them right, as the software would succeed or

fail based on these choices.

From a development point of view, these user stories were instrumental in both

helping to reduce user frustration and fixing garden-variety software ‘bugs’. The narrow

line of frustration versus challenge is not always easy to see, and frequently can only be

seen through the eyes of a user. Users typically do not have the familiarity with software

that a developer does, and this developer familiarity often leads to developer ‘blindness’.

Examples of software ‘bugs’ that user experiences reveal can be unexpected, from ‘the

spiral generates in the wrong direction’, to ‘the starting angle is off by 90 degrees’. These

types of issues, of course, are all a matter of perspective and are likely to come to light

through the observations of someone that has not been looking at the software for many

hours.

5.3.1 Cornrow Curves Simulation with Two Students

This user story highlights Jackie and Tomas5, two students who attend a 'high

needs' middle school in Albany, New York. This middle school is located in an urban

area, with about 650 students in grades 6-8. The student population is about 55% African

American, 17% Hispanic, and 9% multiracial, with 72% eligible for free lunch. This

school faces the daily challenge of educating students whose experiences at home range

from stable to homeless, with parents missing from the household because they are in

prison, drug rehabilitation, etc. Often, these challenges at home require these students to

take care of younger siblings, such that homework and studying for school exams take a

lower priority. The Cornrow Curves software was used by members of the seventh grade

science club, which was composed of students that had chosen to participate in science

enrichment activities.

These students worked with the Cornrow Curves for about an hour, during which

time I recorded observations concerning their use of the program. I paid particular

attention to how many objects (in the form of curves) they created and the complexity of

5 The names Jackie and Tomas are both pseudonyms used for the purpose of this written account.

 89

the pattern they were able to produce in that period of time. In addition, I recorded my

perception of their reactions as they made scripts with the program building blocks,

called codelets, to accomplish drawing tasks that interested them.

At the beginning of the work session, I provided them with a brief demo of how

to simulate a braid. I first used a script, followed by an overview of how the software

functioned. I then started with how objects were created (in this pCSDT, there is only one

type of object, the plait, but the user can create multiple instantiations of that object).

Next, we reviewed how the scripting panel worked, and the expectation that each script

should start with an “On Begin” Event codelet. Finally, I explained that once an object is

created, the codelet panel fills with all the available codelets for the object.

Thus, I instructed, “First place an ‘On Begin’ Event codelet in the scripting panel,

then click on the Methods panel and add method codelets to define the plait pattern you

want to create. For example, to create a new curve, click on ‘Create New Object’, choose

‘Plait’ and then begin selecting method codelets to complete the curve definition.”

I then demonstrated the process by adding some codelets and then clicking

“Begin”, so that the students would know how to run their scripts and see the results that

they produced. Finally, I demonstrated deleting an object from the Object Pane by right

clicking the object to be deleted and choosing “Delete”. After this brief summary on

object creation, deletion, and script building, I encouraged the students to give it a try.

The students began working with the software, individually, on the netbook

computers. For the remainder of the trial time, I did my absolute best to not interfere

unless a student had forgotten to use an “On Begin” Event codelet at the top of their

script, and only if they seemed unable to resolve an issue themselves. That is because my

goal was to examine how well the students would do with a minimum of instruction: an

important goal given that math teachers generally do not want to invest a great deal of

time in training students on software. In wandering from student to student, I did

occasionally ask, “What were you trying to do?” if something apparently unexpected had

occurred, but otherwise I just simply praised them on the work that they were doing as

general encouragement.

During the course of my observations, I noticed that student ability in working

with the software ranged from having great difficulty with the programming process to

 90

working with relative ease. I will focus on two students at opposite ends of this spectrum;

their pseudonyms are Tomas (male Latino) and Jackie (female African American).

Tomas demonstrated a fair amount of proficiency in working with the programming

aspects of the software, and later mentioned some previous experience with

programming. Jackie was at the other end of the spectrum.

Tomas quickly created the scripts necessary to generate a curve on the screen. He

had little difficulty in navigating the interface to find the event, control, and method

codelets that were necessary to accomplish the task and only once, when I happened to be

near him did he ask a question concerning loop creation. Once I reviewed with him how

to insert the variables in the control structure for a “do while” loop, he proceeded to

complete his script and clicked “Begin”. I heard an audible gasp from Tomas, and upon

returning to him I found that the result he was expecting was not what was displayed on

the screen. I asked him “What were you trying to do?” He explained how he wanted the

loop to function and how he wanted the plait to be drawn across the screen. Upon closer

inspection, I realized that he had placed the “Duplicate” codelet before the Repeat-While

loop, but I did not give him the solution. Rather, I suggested that he go back through his

script step-by-step and see if he could figure out how to fix it.

Jackie had taken a different approach to drawing a curve of plaits on the screen, as

she was creating new objects for each plait in the curve. Although Jackie was not getting

the program results that had originally been demonstrated at the beginning of the session,

she was still very engaged in creating her curve on the screen in the manner in which she

was able to do so. In addition to creating new plait objects and placing them on the screen

using the initial (X,Y) value in the properties panel, she was also making use of the rotate

and dilate codelets resulting in an approximation of the results of the initial program

demonstration. While I was observing her working, she looked up and asked, "How do

you make it do the curve on its own?" There is nothing more gratifying in a high needs

school than to have a student say "help me".

I took Jackie back through the original example and demonstrated the “Do While”

codelet. I also reviewed the different panels containing the Controls, Methods, and

Events. Having completed the review, I did not offer any more suggestions unless Jackie

asked additional questions. I paid closer attention to Jackie as she worked for the rest of

 91

the session because I really wanted to know if she succeeded at climbing the learning

curve. She continued to work steadily and did succeed at assembling a loop before the

session ended.

At some point, I heard what I thought was an “Ah-hah!” from Tomas which

immediately drew me back over to where he was working. He had successfully de-

bugged his script and discovered that he had put the “Duplicate” codelet in the wrong

place. Having moved “Duplicate” to the correct place, the script functioned according to

his expectations, which resulted in a very happy Tomas.

In addition to my observations of Tomas debugging a script and Jackie grappling

with the beginnings of programming, there were other interesting indications of learning

taking place. After hearing a groan from one student, I noticed a hand go up to the screen

and trace along the Cartesian coordinate lines of the grid, followed by an "Oh!" and what

seemed to be an adjustment of the starting (X,Y) values, terminating in a "Yay!" Another

student spent a significant amount of time experimenting with the starting angle of the

plait - it seemed as though every time I passed by where this student was working, the

plait was being rotated yet again, quite probably through most of the 360 degrees that are

available for rotation!

In summary, it seemed that this was a fairly good balance of challenge and ease of

use—more or less on target for the ZPD.

5.3.2 Kente Cloth Weaving Simulation with a Class

During the summer of 2012, I had the honor of traveling to Kumasi, Ghana for the

second time as one of the graduate student Fellows whose travel was funded by the

National Science Foundation GK-12 program. While in Kumasi, we conducted the first

usability tests for the Kente cloth pCSDT. The tests were conducted with twenty junior

high school students, with the assistance of one of the school's Information and

Communications Technology (ICT) instructors. Twenty students working on the software

at once would require that they be in groups of two, working on one computer, this was

the first field test of the Kente cloth software, and it did not go quite as expected.

The Kente cloth pCSDT was pre-loaded onto the netbooks that the GK-12 grant

had provided for our use with these students. There was no indication that there was

 92

anything amiss with the software. The Java virtual machine started when it was selected,

the applet loaded, and the interface appeared just as it had on my development machine.

In addition, the default script (though very simple) ran without noticeable difficulty. We

seemed to be all ready for the students to work with software.

The students assembled at 9:00 am for their ICT class and we passed out the

netbooks for the students to use. They started the netbooks and from the windows

desktop clicked on the Kente cloth pCSDT. With the interface started and visible, I

reviewed the basics of the program with them, briefly, as they had used the Cornrow

Curves pCSDT the day before, and therefore, they had some familiarity with this

program already. Once we reviewed the basics of the codelets and the panels, the students

were encouraged to begin constructing their own Kente cloth designs.

I began circulating from student to student, helping them to get the initial parts of

each script constructed properly in the scripting panel. In particular, the first step in the

pCSDTs is to find the 'On Begin' codelet in the Events panel and place it in the scripting

panel. From there, it is a matter of locating the weave on the screen by the use of 'X' and

'Y' values in the Cartesian plane, and using the duplicate codelet, which creates the weave

circles at that location. In moving from student to student through the classroom, it was

my experience that roughly half of the students started the script successfully on their

own, with the other half needing that initial assistance.

At this point, one of the students called me over and asked me how to construct a

row of weaving on the screen. From a pedagogic standpoint, it occurred to me that this

would be a perfect time to highlight the ability of the iteration codelets, 'Do While' or

'Repeat' so many number of times. I decided that the 'Repeat' codelet would be a better

first introduction to iteration. I reflected the question back to the student to be sure that I

had understood her intention correctly "Do you want to create a weaving pattern for a

line, without having to create each weave individually?", for which her response was yes.

I suggested that she click on the Control tab of the codelet panel, then she did and all of

the yellow control codelets appeared. I pointed out the 'Repeat' codelet and she dragged it

over and attached it to the 'On Begin' event codelet, which was already present in the

scripting panel. This was the first time that I noticed that something was not going well

with the software. When the student clicked on the codelet to drag it, it seemed to be

 93

located about two centimeters behind the mouse pointer. The student also misjudged the

placement of the 'Repeat' codelet and released the mouse too soon, which caused the

'Repeat' codelet to snap back to the Control codelet panel. What had been a minor 'lag'

annoyance with dragging codelets in development, was now manifesting itself as a

serious usability issue.

I was aware of the 'lag' that codelets suffered when being dragged from the

codelet panel. However, this behavior was not always consistent. On my development

machine, dragging was never an issue. However, that machine was far more powerful

than the netbooks that were being used by these students. The intermittent behavior in the

'lag' made me think it was just a Java virtual machine error, or perhaps, an issue with this

individual computer. However, on the netbooks being used currently, the 'lag' was no

longer intermittent, and worse yet, it was causing student frustration like the 'codelet snap

back' experienced by this student. Undaunted for the moment, the student again selected

the 'Repeat' codelet and dragged it over to the 'OnBegin' codelet in the scripting panel.

This time, however, she made certain not to release the mouse button until she was

convinced that the codelet would indeed attach itself to the script. We then went on to

add the 'Translate 'X'' and 'Duplicate' codelet to the interior of the 'Repeat' codelet, and

after setting the initial values for the amount of the translation and repeat, the image of a

line of weaving successfully appeared on the screen.

During the remaining amount of the lesson time, I circulated and helped to

troubleshoot difficulties in programming logic that yielded unexpected results on the

screen, however, it became clear that this version of the Kente cloth weaving applet

suffered from deep design flaws. This particular user story is recounted and continued as

a developer story in section 5.4.1.

 5.4 Ethnographic Developer Stories

5.4.1 Kente Cloth

This developer story is a continuation of the user story from section 5.3.2 of this

chapter. We pick up the narrative after the lesson has started, when all students have

accomplished creating the beginning of a script in the scripting panel, and when all

students have started to create more complicated designs with the Kente cloth pCSDT.

 94

Up to this point, the lesson seemed to be going well such that only the 'lag' difficulty in

dragging codelets from the Control and Methods panel into the scripting panel being

identified as a problem.

The lesson went well initially, however as students began to add additional

objects to the program, as they made progressively more complicated designs, it became

very clear that the software was not up to the task. The design flaw in the program would

take a while to sort out once we returned home, but the results of the design flaw were

quickly becoming evident. The more objects the students added to their design, the

slower the interface became, eventually grinding nearly to a halt. As it turns out, that first

design of the Kente cloth applet drew its weave representation on the screen by drawing

Java 2d circles – a lot of them. The computational load in drawing and redrawing of

increasingly many circles on each screen update, proved to be too much for the netbooks

that we were using. It was definitely an instructive experience for me as a developer. I

never noticed any sort of slowdown because my development machine was, at the time, a

far more powerful machine than the netbooks. We had finished this version of the applet

on our flight to Ghana, and this was the first time it had been used with students.

Worse yet were the side effects, slowing down the user interface. A lag 'bug' that

occurred when the user dragged codelets from the methods and control panel into the

scripting panel had graduated from minor annoyance to major impediment. As the

netbooks were working on redrawing so many circles on the screen to represent the

weave, the screen refresh rate plummeted, resulting in what could only be described as a

'hiccup' effect, when the user made changes to the scripting panel. It was clear that this

version of the Kente cloth simulation had failed its student users and I called an end to

the lesson, apologizing to the students saying that they all had done a great job; however,

our software had not properly supported them in their design efforts.

The user experience, detailed above, though difficult for the students and the

developer, really helped to move the development of the Kente cloth weaving simulation

forward. First, after careful analysis of the applet design, it became clear that using Java

2d circles was not the optimum strategy for this project. In the re-design of the Kente

cloth applet, we switched to using OpenGL ellipses to simulate the weave pattern on the

screen. Using OpenGL to draw the weave representation resulted in an improvement in

 95

the speed of the drawing over Java 2d and resulted in a more clean and realistic

rendering.

Second, as I worked to lower the complexity of drawing the weave pattern, I also

recognized another design element that had consequences that I had not noticed

previously. The 'game loop' that started once the GUI was on the screen, made its way

through the object queue, updating all of the system parameters such as location, color,

etc., and then through the Event queue, which handled all of the changes made by the

codelets in the scripting panel. Following the object and event queues, the 'game loop'

would issue a call to refresh the screen – which in the case of the original version of the

Kente cloth applet, meant redrawing all of the weave circles. This happened in every trip

through the 'game loop', whether or not the screen needed to be refreshed. This call to

'refresh' was the appropriate design for an animation simulation such as the pCSDT

Skateboarder applet, however this was not at all optimal for a drawing applet such as

Kente cloth. We added a Boolean value that would allow the 'game loop' to skip the

screen refresh if the refresh was not necessary in that trip through the loop.

5.4.2 Adinkra Stamping

The developer ethnographic stories are taken from direct observation, for research

that was conducted on site in Ghana and from emails between developers over the

development period. The Adinkra stamping pCSDT was an especially challenging applet

to develop. This applet sat at the intersection of the cultural simulation that is Adinkra

stamping, the mathematics involved in creating the geometric forms found in the craft,

and the computational complexity issues that arise from rendering those forms on the

screen for the user. We start our story about the Adinkra stamping pCSDT with the

interactions with our craftsperson, Gabriel Boakye, in Ntonso Ghana.

The initial interviews that were conducted with Gabriel took place in the summer

of 2011 and are covered in the Software Development chapter of this work. We pick up

the story with the events of our return visit to Ntonso in the summer of 2012. We worked

on the Adinkra stamping tool from the time of our initial interview in the summer of 2011

to our return in the summer of 2012. We presented software to Gabriel at his shop in

Ntonso. In our second encounter, we gathered additional feedback that indicated that

 96

although he was pleased with our work, we did not have everything exactly correct in the

simulation.

Frequently, there are tradeoffs that are required as we balance fidelity of the craft

production in the real world with our pedagogical renderings in the virtual world. In this

case, we had placed the Cartesian grid that serves as scaffolding to the user, to aid in

design element placement, such that all four quadrants were available to the user. Gabriel

immediately determined that from a craft point of view, an Adinkra artisan would never

look at stamp placement in that way. This was a particularly interesting discussion

because we had made that design decision based on my desire to include the four

quadrants from a mathematics pedagogic point of view. In the end, we deferred to

Gabriel and placed the entire simulation output screen into the first quadrant with

coordinates running from 0 on the left increasing to the right and vertically.

Development continued on the Adinkra stamping pCSDT throughout the next

year. The new goal was to solve all of the issues with the software in order to test the

software with the students at the junior high school in Kumasi, in the summer of 2013. To

accomplish that task, several issues needed to be resolved in developing the application.

The developers needed to decide on how the software should treat the starting angle for

spirals. The spirals drawn to the screen needed to be scaled and matched to a spiral drawn

in the real world, on graph paper – using the same parameters for both physical and

virtual representations. For this to work, in particular, for junior high school students, the

software would need to take parameters measured in degrees, convert them into radians

for the figure that would be displayed on the screen and back again as output for the

student user. The development effort would need to be completed before departure,

which was scheduled for the 1st of July.

 97

Figure 5.1: Adinkra stamping pCSDT logarithmic spiral example

There was great difficulty in deciding how to handle the 'start angle' of a spiral.

There were two ways of thinking about the start angle, one is the math way and the

second was the 'turtle' way [79]. The math way would orient the angle direction as the

degree. Note in the figure above, that would seem to be a start angle of 90 degrees as the

figure (from the innermost part of the coil) starts by heading 'north', or parallel to the

positive 'Y' axis of the Cartesian plane. The 'turtle' way is an inheritance from the Logo

software tradition, which probably drew it from mapping: imagine that you are a 'turtle',

walking 'north' (parallel to the positive 'Y' axis) – since this is the regular way of walking

(walking straight ahead) then that should actually be at a starting angle of 0. This

difference represented a total of 90 degrees out of phase from the 'math' way. Which, we

can ask, is the right method, 'math', or 'turtle', to model this situation? Which is more

useful in the classroom, the 'math' way or the 'turtle' way?

It was very challenging to get all the parameters involved in simulating a

logarithmic spiral to correspond in a sufficiently convincing way, with a spiral one might

draw on a piece of paper. The parameters involved are not just those found in the

equation 𝑟𝑟 = 𝑎𝑎𝑏𝑏𝑏𝑏. When creating a spiral on the screen, there are the extraneous

parameters such as openGL grid size for the output screen. The Cartesian plane

background lines (or image) that is totally unrelated to the spiral figure, but needs to be

sized appropriately to match the drawn spiral, which to be meaningful as a pedagogic

tool, needs to match physical graph paper used by the student.

It was tricky to handle spiral attenuation, as the spiral arm gets larger. The spiral

is actually drawn as a series of circles along the path that the spiral sweeps out as it

grows. There is a point in the growth of the spiral where the fixed circle size begins to

 98

separate, resulting in a dotted line rather than the smooth curve as appears above. As the

arc begins to sweep out larger distances for each degree measure in the arc, the spiral

needs to have additional circles added to the arc to undo the dotted line affect.

In addition, the calculation for the spiral needed to be handled in degrees. The

students using the applet would likely be in grades 6 through 8 and would not have

encountered trigonometry in their math classes at that grade level. Thus, the applet

needed to accept measurements in degrees, which the students would be likely to

understand. However, all the calculations in the back end generating the figure on the

screen are done in radians. This added a layer of complexity in translating degrees

entered by students to radians, and then translating radians back to degrees to display to

students. Further, all of this needed to be scaled to the screen appropriately to match the

protractor that a student was likely to hold up to the image to measure the degrees from

the onscreen image.

As an example of the difficulty:

Figure 5.2: Adinkra stamping pCSDT screenshot

The goal in this case was to make a table with the radius for angles every 90

degrees. For the angle value 450 degrees, the radius equals about 44, which from Figure

5.2 above is (about) 193 - 150 = 44 or so. However, the equation yielded an answer of 24.

 99

As we see in the above description, the final design is a compromise between not

only the demands placed upon it by cultural, pedagogical, and user (HCI) forces, but also

the computing environment.

5.5 Conclusion

Ethnographic studies of both users and developers have proven invaluable in the

pCSDT software development effort. In this chapter, we have reviewed these stories for

user interactions with the Cornrow Curves and Kente cloth applets. The user experience,

as disastrous as it was in the initial rollout of the Kente cloth application, resulted in an

informed approach in the applet re-design that resulted in a greatly improved program. It

is also clear that changes identified in working with the Kente applet also benefited the

Cornrow Curves applet once implemented.

We also looked at the developer experiences for the Kente cloth and Adinkra

stamping applets. Our examination of the challenges in developing the Adinkra stamping

applet demonstrated how the different aspects under consideration, in this case, the user

experience, the mathematics of the curves, and the computer science of rendering the

image on the screen, all needed to find common ground. This ‘sweet spot’, at the

intersection of user experience, math, and computer science is often a difficult place to

identify and build. Nevertheless, when we do succeed at locating our software at just the

right spot, we end up with a pedagogically valuable tool that succeeds at teaching both

the math and computer science concepts involved.

 100

6. SUMMATIVE DATA ANALYSIS7

6.1 Introduction

In this chapter, we review the results of an experiment that we conducted during

the summer of 2014 at a Junior High school, in Kumasi Ghana. Pretest and posttest data

for this experiment was collected under a protocol approved by the Rensselaer

Institutional Review Board (#998), and with the consent of all parents/guardians, the

consent of the Ayeduase Junior high School, and the assent of all students involved in

this study. As discussed in chapter 1, this summative evaluation is used as a final check

on the viability of the software in meeting our goals of improving the math and

computing performance and interest of students, in this case "postcolonial" students in

West Africa.

6.2 Ghanaian Adinkra Symbols and Logarithmic Spirals

Adinkra symbols can be primarily observed today in Ghanaian textiles. The Akan

peoples of Ghana adopted Adinkra textiles around the year 1800, yet the origins of the

craft remain uncertain [51]. Many of their geometric forms exist in older archaeological

artifacts, across a wider geographic range. In the case of the textiles, these were originally

used in the funerary arts with each symbol communicating a particular idea to the

departed loved one. Contemporary uses of Adinkra symbols have expanded well beyond

the funerary arts. Traditional Adinkra artisans in Ntonso, Ghana still carve symbols from

the calabash gourd, make their own ink, and stamp various types and styles of cloth;

primarily for tourists that visit their shops. A drive through nearby Kumasi reveals

Adinkra symbols painted on garden walls, the columns of Internet cafes, and molded into

the backs of plastic chairs. In the 21st century, Adinkra has become a global

phenomenon. In the United States, Adinkra symbols adorn everything from t-shirts and

jewelry to braiding salons, and their forms and names are used in lively and creative ways

by African American community organizations and hip-hop artists.

Portions of this chapter have been submitted to: W. Babbitt, M. Lachney, E. Bulley, and R. Eglash,
"Adinkra mathematics: a randomized, controlled study of ethnocomputing in Ghana," For the Learning of
Math., submitted for publication.

 101

During the time period 2010-2014 we engaged in ongoing ethnographic research

on the mathematical and computational significance of Ghanaian Adinkra symbols. This

research included teaching interventions in Ghanaian junior high schools. The foundation

of this work is based on Eglash’s [45] research that documents Ghanaian pre-colonial

knowledge of logarithmic curves in symbolic representations of organic growth. Western

mathematicians have long recognized logarithmic curves as a defining characteristic of

organic growth. Darcy Thompson’s 1917 classic, On Growth and Form, was one of the

first works to provide a formal analysis. Today specific examples such as the Fibonacci

sequence in plant spirals have become a math textbook staple, while more complex

theories for the ubiquity of power laws in biological morphogenesis are the subject of

significant research programs [127]. While we do not want to attribute understandings

that are not actually present, there is solid evidence that pre-colonial Ghanaian designers

consciously employed logarithmic scaling--in particular the log spiral--as a visual model

for the underlying geometric forms common to living organisms. Adinkra symbols do not

just mimic organic growth; they are a means of representing a hybrid knowledge form at

the intersections of biological, mathematical, and social concepts.

Figure 6.1: Dwennimen

Figure 6.2: Akoko nan

Figure 6.3: Sankofa

In the pre-colonial Ghanaian context, the logarithmic curves found in Adinkra

designs are consistently associated with biological structures. Examples (Figure 6.1-3)

include the ram’s horn, chicken’s foot, and curve of a long-necked bird. Each symbol

represents a colloquial saying connected to cultural and ethical values. For example,

Dwennimen, the ram’s horns, is associated with the saying “it is the heart, and not the

horns that leads a ram to bully [51]”. It is not genetics (the horns you were born with), but

rather your efforts (from your heart) that matter.

 102

Figure 6.4 shows a fourth Adinkra symbol that uses log curves, “Gye Nyame”. It

has a stronger mathematical significance: while the other symbols show log curves

associated with a particular biological structure, the Gye Nyame symbol is a

generalization of log curves as emblematic of life in general. The saying associated with

this symbol is “no one except for God”. The bumps down the center represent the

knuckles of a fist; a symbol of power. At each end there is a logarithmic curve, the curves

of life [128]. Thus, the aphorism becomes less cryptic: “no one except God holds the

power of life.”

Figure 6.4: Gye Nyame: "no one except for God"

This syncretic mathematical/cultural/biological significance of logarithmic curves

in Adinkra forms the basis for our educational interventions. The logarithmic curves of

Adinkra not only vary across symbols but also in different variations of the same symbol,

creating a rich body of geometric forms suitable for discovery or inquiry learning. Are

certain symbol curves quantitatively similar to their biological sources of inspiration?

How does mathematics model the distinctions our eyes and visual intuition tends to

make? Does the variation that different artists give to the same symbol indicate

differences in skill, media, traditions, or other affiliations? Because the 2D form requires

a more complicated description, we began by considering only the 1D “edge” of these

shapes, modeling them as the arc of a logarithmic spiral. Thus we could focus on two

parameters: the angle “sweep” of the log spiral arc, and a constant C that determines the

overall shape (from the equation in polar coordinates: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶𝜃𝜃). We referred to the

constant “C” as the amount of “coilness” (either tightly or loosely) in the curve, in our

work with the Ghanaian junior high school students. For example, consider the Adinkra

symbol Sankofa, which means “you can always return to your roots” (hence the bird

looking backwards). In Figure 6.5a, we can see that the logarithmic spiral makes up the

curve of the Sankofa’s neck. Variations to the design of Sankofa result from the changes

 103

in the exponential parameter or coilness of the neck. Figure 6.5b has a smaller

exponential parameter than Figure 6.5c, which results in the more closed, tightly coiled

spiral. Figure 6.5c has a larger exponential parameter resulting in a more open, loosely

coiled spiral. As we describe in the next section, this mathematical insight was designed

into the log spiral “block” of Adinkra Computing CSnap software as the value “C”.

Figure 6.5: Logarithmic curve and Sankofa, left; Sankofa symbol with different
coilness, middle and right

Adding the mathematical significance of Gye Nyame, Sankofa, and other Adinkra

symbols to Ghanaian educational contexts could create a valuable alternative to dominant

curricular models, which simultaneously claim to be non-cultural abstract universals, and

at the same time make clearly Western references (Pythagorean Theorem, Archimedean

spiral, etc.). Paulo Freire [113] argues that the decontextualization of education from

learners’ concrete experiences is alienating. While the Ghanaian national curriculum has

made an admirable effort to include Adinkra and other local cultural resources in its

humanities curriculum, Freire’s critique is still applicable in the case of math and science

in Ghanaian schools.

The study of Ghanaian culture could be incorporated in schools starting in the

lower primary levels where students are taught how to identify and draw geometric

shapes. Pupils could draw some of the easiest traditional symbols, such as the Akoma

(heart shape), in addition to other basic shapes already in the curriculum. This would

make it easy for students to view their heritage as having contemporary significance

rather than merely a holdover from earlier times. However, this cultural background is

more often taught as part of the Ghanaian language subject in junior high schools; there is

no connection to the study of math, science and technology. Despite the clear presence of

mathematical concepts such as geometric transformations, the Cartesian plane and basic

 104

computations employed by artisans in the making of the Adinkra symbols, none of these

resources are fused into the teaching of math and science in the classroom. Most of the

examples and illustrations given to students are purely abstract theories, with any

concrete illustrations taken from the most generic examples.

One issue that challenges the fusion of culture into math, science and technology

education is the fact that each of the ten regions in Ghana has differences in their cultural

practices and values. In effect, there are different contents for the Ghanaian language

curriculum and syllabus depending on the region a student finds him or herself. For

instance, while a student in the Northern Region may be learning about mud architecture,

those in Upper West region might be learning about the Xylophone as part of their

cultural heritage. This is another reason why Adinkra is particularly appropriate; the

symbols have taken on a status as part of the Ghana national culture shared by all regions,

and even internationally as symbolic of African heritage in the black diaspora.

6.3 Experiment Overview

Our teacher collaborator, Enoch Bulley, selected 20 students from his ICT classes

at the Ayeduase Junior High School. He chose 10 students from the seventh grade and 10

students from the eighth grade. These 20 students were then assigned randomly, using a

random number table to two groups. We have designated these two groups as the control

group and the intervention group.

 This experiment tested the effectiveness of teaching the mathematics of

logarithmic spirals in a “quasi-intervention evaluation” [128]. We refer to the experiment

that we conducted as “quasi-experimental” because, as stated in the literature, we could

not control every variable that we encountered outside of a laboratory setting. However,

we did control what we felt were the most important variables as all students were from

the same school, drawn from the 7th, and 8th grades, with the lessons taught by the same

teachers.

The control group lesson occurred prior to the intervention group lesson. Both

interventions began with a pretest and ended with a posttest that measured the student’s

knowledge of the topics covered in the lesson. The control group received two days of

 105

instruction using the lecture and GeoGebra software simulation. The intervention group

received three days of instruction using lecture and Adinkra Computing in CSnap. The

extra day in the intervention group intervention was included for students to explore the

cultural significance of Adinkra. Instruction time on the math of logarithmic spiral was

equal in both groups.

6.4 Control Group Lesson

The mathematics of logarithmic spirals was taught to the students in a similar

format of lecture, followed by reinforcement of concepts taught through the use of

simulation software. The control group lesson was developed using a freely available

website that details the mathematics of logarithmic spirals. The control group lesson used

a GeoGebra based logarithmic spiral applet to reinforce the mathematics lesson based on

the website. In addition, the control group lesson also included a teacher led guided

practice using the GeoGebra software, as well as a group practice where students

collaborated on a learning project.

6.4.1 Class Period Overview

Class Period 1 Overview:

• Administer pretest for logarithmic spirals (Appendix 1).

• Begin reading from the instructional handout

• Develop Cartesian plane at the chalkboard

• Define exponential parameter

• Using the unit circle at the chalkboard, develop angles and degrees

• Open GeoGebra and load the log spiral applet

• Develop graph of 𝑒𝑒𝑥𝑥 on the chalkboard

• Develop the graph of 𝑦𝑦 = 𝑥𝑥 and 𝑦𝑦 = ln 𝑥𝑥 on the chalkboard

• Develop what we mean by exponential growth

• Continue reading from handout

 106

• Log spiral approximations

• Dividing a golden rectangle into squares yields a logarithmic spiral

• Develop tangent vector

• Return to GeoGebra and point out the tangent vector in the log spiral applet.

Class Period 2 Overview:

• Review of previous days topics

• Continue reading from the instructional handout, spirals in nature.

• Group activity using GeoGebra, matching exponential parameter to log spiral

background graphics.

• Administer posttest.

6.4.2 Class Period Narrative

The lesson started with a lecture with one of the authors at the chalkboard at the

front of the class, with the students seated up front with their copies of the handout. Many

students also had paper, pens and pencils to take additional notes. The schedule for the

first day of our work with the control group (see section 6.4.1 above) started with the

administration of a pretest, then students listening to a lecture while following along

using the printed handout, and then finally students reinforcing what they learned through

the use of the GeoGebra computer simulation for logarithmic spirals.

The lesson plan for the lecture portion of the learning experience involved one of

the authors standing at the chalkboard drawing and explaining the necessary concepts for

the lesson, while making this activity as interactive as possible. This interaction was

sometimes difficult as the students were not always willing to share what they knew with

the author. The lecture included the following concepts, working up from the ground

floor, assuming little or no prior mathematical knowledge. We began with a review of

the Cartesian plane, 'X' and 'Y' axes, coordinate pair notation, angles, measuring angles in

degrees, the unit circle, rays, radius, and exponents, followed by the introduction of the

spiral formula 𝑟𝑟 = 𝑏𝑏𝑒𝑒𝑎𝑎𝑎𝑎.

 107

Next the notion that alpha represents the exponential parameter for the

logarithmic spiral was introduced showing that as alpha changes, the spiral 'opens up' or

'closes'. We introduced the graph of 𝑦𝑦 = 𝑒𝑒𝑥𝑥, drawing it on the chalkboard and we

discussed the concept of exponential growth, showing that small changes in the X

variable result in large changes in Y. Finally, the notion of tangent vector was developed

on the board, both on the unit circle and on the logarithmic spiral at the chalkboard.

With the completion of the lecture, the students returned to their desks along the

outer walls of the room. For the next hour or so, the students worked with a logarithmic

curve applet loaded into the software called GeoGebra. This applet allowed students to

adjust the parameters for the formula 𝑟𝑟 = 𝑏𝑏𝑒𝑒𝑎𝑎𝑎𝑎and see the effects of these changes in the

spiral drawn on their screens.

The authors circulated about the room encouraging students to interact with the

software, making sure that each student succeeded at adjusting the parameters 'a' and 'b',

as well as having each verbalize what happened to the spiral with each parameter change.

The exchanges usually ran something along these lines:

Author: Did you change the values for ‘a’ and ‘b’?

Student: Yes.

Author: Tell me what happened to the spiral.

Some students reported that they had changed the values but were unable to verbalize a

description of the resulting changes to the spiral on the screen. When this occurred, the

author worked with the student changing the values to demonstrate the spiral opening and

closing on changes to variable 'a', and rotation on changes to coefficient 'b'. This

particular GeoGebra applet also included a tangent line simulation represented in the

applet as 'speed'.

 108

Figure 6.6: GeoGebra log spiral application

On the second day of instruction, the review of the previous day’s work was

accomplished by one of the authors standing at the chalkboard guiding the review, but at

each step, asking the students to identify or otherwise talk about each of the topics that

they worked with. Again, starting from the ground up of the Cartesian plane, the students

were asked as a group to identify each concept.

At the completion of the review, the group returned to the handout to look at

pictures of logarithmic spirals in nature. Such spirals included the shells of snails, the

ends of pinecones and the seed arrangement in sunflowers. Following this discussion of

logarithmic spirals in nature, the students returned to their desks to once again work with

GeoGebra. The spirals in nature applet for GeoGebra placed a logarithmic spiral on a

background that showed items from nature, for example the swirl of a hurricane, water

droplets coming off of a wet spinning tennis ball, snail shell and sunflower. This started

as an independent activity and then transitioned into a group activity with students

huddled around a single computer with the display being projected on the wall. Student

interaction began very quietly, but as time went on and the students became more

comfortable with working together, they began shout out different values for the

 109

coefficient 'b' and exponent 'a' that they thought would make the spiral match the

background. At the completion of the activity, the students had managed to determine

values for 'b' and 'a' that convincingly matched the drawn spiral to the background

graphic in the applet.

At the completion of this activity, the students completed the posttest and were

dismissed from the classroom.

6.5 Intervention Group Lesson

6.5.1 Class Period Overview

Class Period 1 Overview:

• Administer pretest for logarithmic spirals (Appendix 1).

• Motivate discussion by asking students about Adinkra.

• Develop Cartesian plane by comparing to Adinkra Kronti Ne Akwamu Adinkra

symbol.

• Introduce and start CSnap application

• Import Akoma script.

• Clear Akoma script.

• Add Cartesian plane costume to the stage.

• Introduce Logarithmic Spirals using student handout, focusing on the Adinkra

Dwennimen symbol.

• Guided Practice:

• Return to CSnap

• Clear Akoma Script

• Rebuild the Akoma Script with students, step by step, explaining each code

block.

• Provide logarithmic spiral parameters for the left half of Akoma. Students to

complete the right half on their own.

 110

Class Period 2 Overview:

• Introduce logarithmic spirals vs. linear spirals.

• Introduce natural versus man made spirals.

• Review curves in nature from the student handout.

• Review logarithmic curves present in Adinkra symbols.

• Dwennimen: the ram's horns

• Sankofa: "return and get it."

• Akoko Nan: chicken's foot.

• Gye Nyame: "Except God."

• Introduce concept of exponential growth using powers of 2 and cell division.

• Design challenge:

• Open 'confused' Dwennimen (Figure 6.13).

• Challenge students to complete Dwennimen so that the spirals match the goal

image.

Class Period 3 Overview:

• Review all key concepts using Adinkra symbols as examples

• Introduce Tangent Vectors using the student handout, continue with CSnap:

• Open CSnap.

• Load the incomplete Mpuannum project.

• Encourage students to complete Mpuannum (Figure 6.15) challenge.

• Administer posttest.

6.5.2 Class Period Narrative

The intervention group lesson used the CSDT CSnap Adinkra Computing applet

to reinforce the mathematics lesson based on the Adinkra symbols. Like the control

 111

group, the intervention group also included a guided practice and a group collaboration

project. The intervention group met for 3 days, one day longer than the control group.

This group had very little lecture at the chalkboard, and when there was work at the board

it was always framed in the context of Adinkra symbols. For example, an Adinkra

symbol was used to motivate a review of the Cartesian plane and when logarithmic

spirals are introduced, they too are done within the context of an Adinkra symbol.

Because the experimental group had the added cognitive load of learning about Adinkra

and the CSnap programming environment, they received the intervention for an

additional day.

The intervention lesson included the same concepts as those used with the control

group, however each of the concepts was motivated and taught using an Adinkra symbol.

For example, in a review of the Cartesian plane, we used the ‘Kronti Ne Akwamu’

(Figure 6, the symbol for “the dual nature of life and democratic decision making in the

State of Ghana [51]”), which enabled us to draw out the comparisons between that

symbol and the Cartesian plane. This enabled us to expose the embedded mathematical

structures present in the symbol to the students. The intervention group started with the

pretest on the first day. Once finished, they gathered at the front of the classroom to begin

review of the student handout.

Figure 6.7: The Cartesian plane, left; Kronti Ne Akwamu Adinkra
symbol, right.

 112

In using this symbol to review the Cartesian Plane, we see that where two

coordinate numbers are the same sign, say (1, 1) or (-1, -1) we see that the symbol is void

as there are no lines in those two quadrants. The lines are drawn, in a sense, where people

live. In a democracy, people live in spaces that involve having differing opinions and in

the case of Kronti Ne Akwamu, that is where the signs of the numbers are different like (-

1, 1) and (1, -1). Following the review of the Cartesian plane using Kronti Ne Akwamu,

we began our work in CSnap.

The students opened the CSnap environment, imported the Akoma project and

added the Cartesian plane graphic to the background of the output window. During this

process we oriented the students within the CSnap programming environment. This part

of the activity is not without difficulty as there is quite a learning curve to accomplish in

mastering the mechanics of loading and saving projects, where to find appropriate code

blocks, how to drag them into the scripting panel, and how to 'run' the script in the

programming interface.

Figure 6.8: CSnap interface with Akoma script running

In Figure 6.6 we see the simulation for the Akoma Adinkra symbol, which stands

for “love, good will, and patience [51]”. The user interface shows the programming

building blocks in blue (left most column), the scripting panel (middle column), and the

 113

output window on the right. The user (student) designs an Adinkra symbol by dragging

code blocks (i.e. black-boxed rules and functions) from the leftmost panel into the

middle-scripting window. Students typically arrange the code blocks using some

combination of planning and trial and error experimentation, checking each time the

script is run to see if the results are close to the desired design.

For those curious about the internal operation of the code, a good analogy might

be a script for a play in which each actor reads his or her part. When the user presses the

green “play” button, she puts the applet into the running state, which triggers an event

queue to cycle through all of the system objects (the actors) in the queue. This updates

the system values for all of the object attributes affected by the code blocks (the script)

that have been added to the event. The play button is one of these events, but a code

block can send out triggers to other code blocks. The updates to values and any other

changes to system parameters result in the alteration of the behaviors (typically graphical)

that appear in the output portion of the user interface.

Unlike similar programs such as Scratch, these code blocks offer operations

specific to many of the Adinkra designs, and their execution is as close as possible to the

original Adinkra artisan practices. For example, at the end of the script in Figure 8, two

log spiral blocks make up the curves of Akoma. The “costume” worn by the object

leaving these curved paths is a photo of the hand of master carver Paul Boakye, holding

his carving knife. We took pains to use an algorithm that always orients the blade along

the tangent to the curve; thus adding both cultural accuracy and mathematical learning

content.

Following their work with Akoma, the students returned to the handout and

logarithmic spirals were introduced through the Adinkra symbol called Dwennimen. The

Dwennimen Adinkra symbol is composed of four spirals and is frequently compared to

ram's horns. The spirals are in pairs because this represents two rams butting heads. "It is

the heart, and not the horns, that leads a ram to bully [51]”. The exponential parameter

was then introduced as what controls 'coil-ness'. The smaller the exponential parameter

the more tightly coiled or closed the logarithmic spiral. The larger the exponential

parameter the more loosely coiled the spiral.

 114

Figure 6.9: Dwennimen Adinkra symbol

The students returned to working in CSnap and a more thorough review of the

interface was conducted. Code blocks that control clearing the screen, raising and

lowering the pen for drawing on the screen, setting the size of a costume graphic, setting

the size of the pen for drawing, changing the drawing direction, and the log spiral code

block were introduced and explored. At this point in the intervention, the amount of time

actually spent working with the mathematics of the logarithmic spiral has been about

twenty minutes. This time came through recreating the Akoma shape which required

adjustments mostly to the exponential parameter C in the log spiral code block, starting

and ending angles and pen growth.

The second day of the intervention began with a discussion of logarithmic spirals

versus linear spirals. Logarithmic spirals are found more in nature where linear spirals are

more likely man made. Following along with the handout, the idea that snails, aloe plants,

the Hawaiian fern etc. all exhibit the shape of the logarithmic spiral. Following the

examples from nature, we reviewed the Adinkra symbols that use logarithmic spirals

such as Dwennimmen (ram's horns), Sankofa which means "return and get it", Akoko

Nan which is the chicken's foot, and Gye Nyame which means 'Except God.'

 115

Figure 6.10: Dwennimen

Figure 6.11: Akoko nan

Figure 6.12: Sankofa

The author then developed the concept of exponents and exponential growth at

the chalkboard. Following this work at the board, we returned to working in CSnap and

the second of our design challenges.

Our work today was then reinforced through working in CSnap on the

Dwennimmen challenge. When the Dwennimmen challenge project is loaded into the

software, it consists of 3 'confused' logarithmic spirals. To complete the challenge,

students need to determine the correct parameters in the logarithmic code blocks that will

make the spirals uniform in size and shape, in addition to adding the fourth spiral.

Figure 6.13: CSnap interface with the 'Confused Dwennimen' design challenge

 116

Figure 6.14: CSnap interface with the Dwennimen challenge, completed

The third day of the intervention started with the students all sitting up at the front

of the class. We began the lesson by introducing the concept of tangent vector on the

chalkboard. This was followed by reinforcing the concept of tangent vector by using the

Mpuannum Adinkra symbol in the CSnap software. The Mpuannum design challenge

provided students with the first three circles of Mpuannum as shown in Figure 6.11. The

student’s task was to add the two remaining circles tangent to the center circle as shown

in Figure 6.12.

 117

Figure 6.15: CSnap interface with the Mpuannum challenge

Figure 6.16: CSnap interface with the Mpuannum challenge, completed

 118

One of the interesting things that became apparent as the authors observed the

students working on the Mpuannum challenge was their difficulty in handling the 'pen up'

and 'pen down' commands so as to draw circles but not have lines between the circles.

The proper sequence should be 'pen up', go to (X, Y), 'pen down', and draw the circle.

The placement of both 'pen up' and 'pen down' proved quite challenging to most students.

Following the completion of the Mpuannum challenge, students returned to their

seats around the outside of the room to complete their posttests. As they completed their

posttests, many of the students handed the test in before time was called and they each

requested to be able to resume working in CSnap. This was a very interesting result as

clearly working with the software created a motivation to continue working even when

they did not have to.

6.6 Results

The pretest and posttests formed the independent samples for a t-test. The results

showed a significant advantage for the scores for the Adinkra computing based lesson (M

= 45.22, SD = 18.67) in comparison to the GeoGebra computing based lesson (M =

13.87, SD = 15.93); the difference was statistically significant at the .001 confidence

level.

Although we believe that the use of the Adinkra Computing CSDT to reinforce

the learning in the intervention group was a success, we realize that there are limitations

in this particular quasi-experiment. One possible limitation is that our sample size is

small with only 19 student’s total (10 students for the control group and 9 in the

intervention group). This number however, was as large as possible, given the constraints

placed on us by the number of computers available for student use. We wanted to make

sure that each student had access to their own machine to limit the potential effects of

students having to share equipment. The students used all available computing equipment

in the classroom, including all teacher-machines.

In future research we hope to examine the role that heritage variation might play

in these results. In this case, we carried out the testing in the Akan cultural region; thus,

many of the students would likely have been of Akan extraction. Since the Adinkra

symbol set belongs to the Akan people, we may see different results elsewhere in Ghana.

 119

However we have seen a great deal of variation with CSDTs in the US, with some

African American students expressing more interest in Native American design tools and

vice-versa [21], [120].

One of the most exciting outcomes of the experiment was the reaction of the

intervention group students after the intervention was over and the posttest completed.

Unlike the control group students who immediately wanted to leave the classroom, the

intervention group students reclaimed their computers and formed small groups at the

front of the room to continue working with the Adinkra Computing CSDT. This is not

unique to Ghana; similar outcomes have been observed in the US for African American,

Latino and Native American students; a promising sign for this approach.

6.7 Conclusion

In this chapter, we reviewed the results of an experiment that we conducted

during the summer of 2014 at a Junior High school, in Kumasi Ghana. As discussed in

chapter 1, this summative evaluation is used as a final check on the viability of the

software in meeting our goals of improving the math and computing performance and

interest of students, in this case "postcolonial" students in West Africa. The results of the

experiment showed that the intervention students outperformed the control group students

yielding a statistically significant outcome as shown by the pre and posttest data. Thus we

are able to reject the null hypothesis that using the pCSDT CSnap had no effect, and

accept the hypothesis that the use of the CSnap pCSDT did have an effect in the outcome

with these students.

 120

7. CONCLUSION

7.1 Contributions to Science

Research Question 1: How do we model the formal systems that underlie cultural

deigns such as textiles, artistic practices, and adornment?

 Modeling the knowledge systems that underlie cultural artifacts and practices

(e.g., textiles, artistic practices, and adornment) cannot be accomplished simply by

analysis of a design as an outsider. The elicitations of the software requirements for the

Kente Cloth and the Adinkra stamping simulations are clear examples of an inquiry

approach that goes beyond observation and analysis to include a research paradigm that is

informed by the particular mental processes of the researched. Our Kente Cloth weaving

expert clearly held all of his knowledge about his craft ‘in his head’ as he put it. It took a

great deal of working together, but with time and effort, a mental model emerged, for me,

of his perceptions of how he practiced weaving Kente Cloth. Our Adinkra expert,

likewise, maintained a great deal of his craft ‘in his head’. However, when comparing the

mental models used for each particular craft, a difference in the complexity of each

mental model emerged. The Kente Cloth weaver maintained many different patterns,

requiring recall for each to the extent that he did not need to measure or count in order to

produce his cloth. This sustained mental effort, I think, is what sets the two models apart.

Arriving at this conclusion required careful questioning, and even more so, careful

listening to the two craft practitioners. A comprehensive understanding of the knowledge

systems that underlie cultural crafts, allows us to most efficiently and effectively work

with them as those knowledge systems inform the formal models of our software.

Research Question 2: How do we transform the formal models gained in Question

1 into user friendly, pedagogical software?

Once we arrived at the formal models (i.e. outcome from question 1), we needed

to translate them into a user-friendly, software interface that served a pedagogical

purpose. In our case, pCSDTs that 1) students would enjoy using, 2) provided a faithful

as possible recreation of the indigenous craft or cultural practice in simulation, and 3)

served a pedagogical purpose. This ‘sweat spot’, as we have come to call it, is sometimes

very challenging to find, as we saw with both the Kente Cloth and Adinkra stamping

 121

pCSDTs. Of the two, I think that I am the most proud of the Adinkra stamping pCSDT.

The Adinkra applet succeeded at finding the ‘sweat spot’ between a well-functioning user

interface, the complex mathematics of logarithmic spirals, and the scripting requirements

found in computer science education. Achieving the ‘sweet spot’ where student interest,

cultural authenticity, and curricular demands successfully intersected for the Adinkra

pCSDT was one of the most rewarding challenges for me.

Research question 3: How do we avoid the ecosystem colonization of our

software that other pedagogical software have undergone?

 Deciding the proper balance for ‘locking’ down the design tools was surprisingly

difficult. Determining the amount of extensibility allowed to students, in adding

functionality that is unrelated to the cultural crafts and practices under simulation, needed

just the right balance. Restricting this ability with a Tool to too great of an extent, would

make it seem boring, however, no restrictions would run the risk of corporate or violent

colonization as explored in chapter 4.

I think the Cornrows applet is a good example of such a balance that we

successfully negotiated. In Cornrows, the user is able to upload their own graphics files to

make braids of their friend’s faces or other images, but the braiding infrastructure does

not change. Thus, this is an example where the tool is extensible in creative ways;

however, it remains a tool for cultural simulation.

Research question 4: How can we use formative feedback to inform our

development efforts?

 As we have seen in chapter 5 of this work, user and developer ethnographies have

been crucial in informing our development decisions on the pCSDTs. Using formative

feedback, the interface design gradually evolved in an ‘Agile’ model of iterative

development. Our development meetings each week included a review of the progress

made during the previous week. Following this review, we made decisions on what next

feature or ‘bug’ should receive attention, in light of student usability testing that was

simultaneously being conducted.

Research question 5: How do we conduct a summative evaluation of our software

with student users, as a final check on the viability of our software?

 122

Summative evaluation was used as a final check on the viability of the software in

meeting our goals of improving the math and computing performance and interest of

underrepresented students, as well as for students in a ‘postcolonial’ site in West Africa.

As recounted in chapter 6, we conducted an experiment at a junior high school in Kumasi

Ghana using the current version of the pCSDTs, called CSnap. We have named the lesson

that we tested ‘Adinkra Mathematics’, where we taught the mathematics of logarithmic

spirals using both a non-culture based computer program and our CSnap application. We

view the statistical outcome of that randomized experiment as highly significant and are

greatly encouraged to move forward with further inquiry in this area.

7.2 Contributions to Society

When we consider the successful outcomes that we have achieved through this

research, we need to remind ourselves of our initial motivations. The U.S. is plagued by

historical harms that began with European imperialism and colonization and which

present today as social exclusions and systemic inequalities, such as what is described as

the ‘quiet crisis’ of underrepresentation in the STEM fields. Ethnocomputing can be used

a way of creating ‘content aware’ ‘user spaces’ in which indigenous knowledge systems

and culturally relevant knowledge systems become a sort of cultural capital as a way to

counter prevalent internalized pathologies of the myths of genetic and cultural

determinism that give rise to STEM avoidance. Culture inclusive educational tools, such

as the pCSDTs represent a constructionist pedagogy that has been uniquely designed to

fill potentially harmful spaces with culturally significant computational capital. The

content-aware approach used in the pCSDTs has the advantage of a built-in anti-racist

message, with the potential to decolonize computing and mathematics education because

of the usefulness of its ability to both be inclusive and bridging. Because of this unique

approach, content-aware software, such as the pCSDTs, can also be a way to address and

heal historical harms. My motivation for doing this research is to help improve

educational outcomes for underrepresented students.

It is my opinion that our research shows that ethnocomputing can play a very

effective role in improving student outcomes. We (and others) have shown that

computational thinking results when students interact deeply with constructionist base

 123

software such as the pCSDTs. We have a strong experimental result that shows that test

scores do improve with these culture-based simulations. I hope to have the opportunity to

continue working on these types of projects in the future.

 124

References

[1] S. Jackson, "Waking up to the quiet crisis in the United States: Its time for a new

call to action.," The College Board Review, vol. 210, pp. 24-27, Winter/Spring
2007.

[2] Nat. Sci. Found. (2011, Jan. 12). Women, Minorities, and Persons with

Disabilities in Science and Engineering: 2011 [Online]. Available:
http://www.nsf.gov/statistics/wmpd/, Date Last Accessed 11/02/2014.

[3] J. Graves. (2010, Oct. 20). How does creationism harm African Americans?

[Online]. Available: http://evostudies.org/2010/06/how-does-creationism-harm-
african-americans/, Date Last Accessed 11/02/2014.

[4] I. Olalde, M. E. Allentoft, F. Sánchez-Quinto, G. Santpere, C. W. Chiang, M.

DeGiorgio, et al., "Derived immune and ancestral pigmentation alleles in a 7,000-
year-old Mesolithic European," Nature, vol. 507, no. 7491, pp. 225-228, Jan.
2014.

[5] J. Tooby and L. Cosmides, "The psychological foundations of culture," in The

Adapted Mind: Evolutionary Psychology and the Generation of Culture, J. H.
Barkow, L. Cosmides, and J. Tooby, Eds., New York, NY, USA: Oxford Univ.
Press, 1995, pp. 19-136.

[6] S. J. Gould, The Mismeasure of Man. New York, NY, USA: Norton, 1996.

[7] J. U. Ogbu and H. D. Simons, "Voluntary and involuntary minorities: A cultural-

ecological theory of school performance with some implications for education,"
Anthropology & Educ. Quart., vol. 29, no. 2, pp. 155-188, June 1998.

[8] S. Fordham, "Peer-proofing academic competition among black adolescents:

"Acting white" black American style," in Empowerment Through Multicultural
Education, C. E. Sleeter, Ed., Albany, NY, USA: State Univ. of NY Press, 1991,
pp. 69-93.

[9] R. G. Fryer Jr and P. Torelli, "An empirical analysis of acting white," J. of Public

Econ., vol. 94, no. 5, pp. 380-396, June 2010.

[10] C. M. Steele, S. J. Spencer, and J. Aronson, "Contending with group image: The

psychology of stereotype and social identity threat," Advances in Experimental
Social Psychology, vol. 34, pp. 379-440, 2002.

[11] M. L. Andersen and P. H. Collins, Race, Class, and Gender: An Anthology, 6th

ed. Belmont, CA, USA: Wadsworth, 2007.

 125

[12] R. A. Olson. (2014, Oct. 20). White privilege in schools [Online]. Available:
http://www.createwisconsin.net/events/ConferenceHandouts/Tuesday/845am/Whi
te_Privilege_in_Schools.pdf, Date Last Accessed 11/02/2014.

[13] J. R. Flynn, Are We Getting Smarter? Rising IQ in the Twenty-first Century. New

York, NY, USA: Cambridge Univ. Press, 2012.

[14] M. Gladwell. (2007, Dec. 17). None of the above: What IQ doesn’t tell you about

race. The New Yorker [Online]. 31-34. Available:
http://www.newyorker.com/magazine/2007/12/17/none-of-the-above, Date Last
Accessed 11/02/2014.

[15] E. Roivainen, "Economic, educational, and IQ gains in eastern Germany 1990–

2006," Intelligence, vol. 40, no. 6, pp. 571-575, Dec. 2012.

[16] P. Bourdieu, "The forms of capital," in Readings in Economic Sociology, N. W.

Biggart, Ed., Malden, MA, USA: Blackwell, 2002, pp. 280-291.

[17] K. Brennan and M. Resnick, "New frameworks for studying and assessing the

development of computational thinking," in Proc. of the 2012 Annu. Meeting of
the Amer. Educational Research Assoc., Vancouver, Canada, 2012, pp. 1-25.

[18] A. Pickering, The Mangle of Practice: Time, Agency, and Science. Chicago, IL,

USA: Univ. of Chicago Press, 1995.

[19] A. Bennett and R. Eglash, "cSELF (Computer science education from life):

Broadening participation through design agency," Int. J. of Web-Based Learning
and Teaching Technologies (IJWLTT), vol. 8, no. 4, pp. 34-49, Oct.-Dec. 2013.

[20] W. M. Geniusz, Our Knowledge is not Primitive: Decolonizing Botanical

Anishinaabe Teachings, 1st ed. Syracuse, NY, USA: Syracuse Univ. Press, 2009.

[21] B. Babbitt, D. Lyles, and R. Eglash, "From ethnomathematics to

ethnocomputing," in Alternative Forms of Knowing (in) Mathematics, S.
Mukhopadhyay and W.-M. Roth, Eds., Rotterdam, The Netherlands: Sense
Publishers, 2012, pp. 205-219.

[22] W. Babbitt, M. Lachney, E. Bulley, and R. Eglash, "Adinkra mathematics: A

randomized, controlled study of ethnocomputing in Ghana," For the Learning of
Math., submitted for publication.

[23] J. M. Jama, "The role of ethnomathematics in mathematics education cases from

the horn of Africa," ZDM, vol. 31, no. 3, pp. 92-95, June 1999.

 126

[24] P. Gerdes, "Conditions and strategies for emancipatory mathematics education in
undeveloped countries," For the Learning of Math., vol. 5, no. 1, pp. 15-20, Feb.
1985.

[25] S. Anderson, "Worldmath curriculum: Fighting eurocentrism in mathematics," J.

of Negro Educ., vol. 59, no. 3, pp. 348-359, Summer 1990.

[26] M. Frankenstein and A. B. Powell, "Toward liberatory mathematics: Paulo

Freire’s epistemology and ethnomathematics," in Politics of Liberation: Paths
From Freire, C. Lankshear and P. McLaren, Eds., London, UK: Routledge, 1994,
pp. 74-99.

[27] C. Zaslavsky, "'Africa Counts' and ethnomathematics," For the Learning of

Math., vol. 14, no. 2, pp. 3-8, June 1994.

[28] S. G. Harding, Sciences From Below: Feminisms, Postcolonialities, and

Modernities. Durham, NC, USA: Duke Univ. Press, 2008.

[29] F. Elliott, "Science, metaphoric meaning, and Indigenous Knowledge," Alberta J.

of Educational Research, vol. 55, no. 3, pp. 284-297, Fall 2009.

[30] F. Ahia and E. Fredua-Kwarteng, "Gazing mathematics and science education in

Ghana," in Contemporary Issues in African Sciences and Science Education, A.
Asabere-Ameyaw, G. J. Sefa Dei, K. Raheem, and J. Anamuah-Mensah, Eds.,
Rotterdam, The Netherlands: Sense Publishers, 2012, pp. 103-125.

[31] A. N. Ezeife, "Using the environment in mathematics and science teaching: An

African and aboriginal perspective," Int. Review of Educ., vol. 49, no. 3-4, pp.
319-342, July 2003.

[32] J. Lipka, M. P. Hogan, J. P. Webster, E. Yanez, B. Adams, S. Clark, et al., "Math

in a cultural context: Two case studies of a successful culturally based math
project," Anthropology & Educ. Quart., vol. 36, no. 4, pp. 367-385, Jan. 2005.

[33] R. Eglash, M. Krishnamoorthy, J. Sanchez, and A. Woodbridge, "Fractal

simulations of African design in pre-college computing education," ACM Trans.
on Computing Educ. (TOCE), vol. 11, no. 3, article 17, Oct. 2011.

[34] S. Khan, "Ethnomathematics as mythopoetic curriculum," For the Learning of

Math., vol. 31, no. 3, pp. 14-18, Nov. 2011.

[35] U. D’Ambrosio, "From Ea, through Pythagoras, to Avatar: Different settings for

mathematics," in Proc. of the 34th Conf. of the Int. Group for the Psychology of
Math. Educ., 2010, pp. 1-20.

 127

[36] R. Eglash and C. Garvey, "Basins of attraction for generative justice," in Chaos
Theory in Politics, S. Banerjee, S. S. Ercetin, and A. Tekin, Eds., The
Netherlands: Springer, 2014, pp. 75-88.

[37] W.-M. Roth and A. C. Barton, Rethinking Scientific Literacy, 1st ed. New York,

NY, USA: Routledge, 2004.

[38] E. Gutstein, Reading and Writing the World with Mathematics: Toward a

Pedagogy for Social Justice. New York, NY, USA: Routledge, 2006.

[39] U. D'Ambrosio, "Ethnomathematics: A response to the changing role of

mathematics in society," Philosophy of Math. Educ., vol. 25, Oct. 2010.

[40] M. Rosa and D. Clark, "Ethnomodeling as a pedagogical tool for the

ethnomathematics program," Revista Latinoamericana de Etnomatemática, vol. 3,
no. 2, pp. 14-23, 2010.

[41] J. M. Wing, "Computational thinking," J. of Computing Sciences in Colleges, vol.

24, no. 6, pp. 6-7, June 2006.

[42] J. Margolis, R. Estrella, J. Goode, J. J. Holme, and K. Nao, Stuck in the Shallow

End. Cambridge, MA, USA: MIT Press, 2008.

[43] R. Eglash, "Native-American analogues to the Cartesian coordinate system," in

Culturally Responsive Mathematics Education, B. Greer, S. Mukhopadhyay, A.
B. Powell, and S. Nelson-Barber, Eds., New York, NY, USA: Routledge, 2009,
pp. 281-294.

[44] J. Barta and R. Eglash, "Teaching artful expressions of mathematical beauty:

Virtually creating Native American beadwork and rug weaving," in Handbook of
Research on Computational Arts and Creative Informatics., J. Braman, Ed.,
Hershey, PA, USA: IGI Global, 2009, pp. 280-289.

[45] R. Eglash, African Fractals: Modern Computing and Indigenous Design.

Piscataway, NJ, USA: Rutgers Univ. Press, 1999.

[46] Inquiring into Inquiry: Learning and Teaching in Science. Washington, DC:

AAAS, 2000.

[47] T. A. Brush and J. W. Saye, "A summary of research exploring hard and soft

scaffolding for teachers and students using a multimedia supported learning
environment," The J. of Interactive Online Learning, vol. 1, no. 2, pp. 1-12, Fall
2002.

 128

[48] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K.
Brennan, et al., "Scratch: Programming for all," Commun. of the ACM, vol. 52,
no. 11, pp. 60-67, Nov. 2009.

[49] R. S. Rattray, G. T. Bennett, V. Blake, H. D. Buxton, R. R. Marett, and C. G.

Seligman, Religion and Art in Ashanti. Oxford, UK: Clarendon, 1927.

[50] Kente Cloth Patterns and Their Meanings [Online]. 2012. Available:

http://csdt.rpi.edu/african/kente/patterns.html, Date Last Accessed 11/02/2014.

[51] W. B. Willis, The Adinkra Dictionary: A Visual Primer on the Language of

Adinkra. Washington, DC, USA: Pyramid Complex, 1998.

[52] T. A. Cook, The Curves of Life: Being an Account of Spiral Formations and Their

Application to Growth in Nature, to Science, and to Art: With Special Reference
to the Manuscripts of Leonardo da Vinci. New York, NY, USA: Dover, 1979.

[53] W. Babbitt, "An analysis of the programmable Culturally Situated Design Tools

from an HCI perspective," presented at the 3rd Annu. Symp., Theory and
Research in HCI, Troy, NY, USA, 2012.

[54] R. Eglash and A. Bennett, "Teaching with hidden capital: Agency in children’s

computational explorations of cornrow hairstyles," Environments, vol. 19, no. 1,
pp. 58-73, 2009.

[55] L. S. Vygotsky, Mind in Society: The Development of Higher Psychological

Processes, 14th ed. Cambridge, MA, USA: Harvard Univ. Press, 1978.

[56] M. Resnick and B. Silverman, "Some reflections on designing construction kits

for kids," in Proc. of the 2005 Conf. on Interaction Design and Children, Boulder,
CO, USA, 2005, pp. 117-122.

[57] M. Fowler and J. Highsmith, "The Agile Manifesto," Software Develop., vol. 9,

no. 8, pp. 28-35, Aug. 2001.

[58] Student, private communication, 2012.

[59] P. N. Johnson-Laird, "Mental models and deductive reasoning," in Reasoning:

Studies in Human Inference and its Foundations. , J. E. Adler and L. J. Rips, Eds.,
Cambridge, UK: Cambridge Univ. Press, 2008, pp. 206-222.

[60] P. Turner and G. Walle, "Familiarity as a basis for universal design,"

Gerontechnology, vol. 5, no. 3, pp. 150-159, Sept. 2006.

 129

[61] D. Rapp, "Mental models: Theoretical issues for visualizations in science
education," in Visualization in Science Education, J. K. Gilbert, Ed., Dordrecht,
The Netherlands: Springer, 2005, pp. 43-60.

[62] K. Craik, The Nature of Exploration. Cambridge, UK: Cambridge Univ. Press,

1943.

[63] Apple Inc., Macintosh Human Interface Guidelines. New York, NY, USA:

Addison-Wesley, 1992.

[64] M. Lachney, W. Babbitt, and R. Eglash, "Alternatives to the content agnostic

position in the 'Construction Genre' of learning technology," Computational
Culture: A J. of Software Stud., submitted for publication.

[65] M. Ito, Engineering Play: A Cultural History of Children's Software. Cambridge,

MA, USA: The MIT Press, 2009.

[66] I. Harel and S. Papert, Eds., Constructionism. Westport, CT, USA: Ablex, 1991.

[67] S. Papert, "Perestroika and epistemological politics," in Constructionism, S.

Papert and I. Harel, Eds., Westport, CT, USA: Ablex, 1991, pp. 13-28.

[68] C. K. Olson, L. A. Kutner, D. E. Warner, J. B. Almerigi, L. Baer, A. M. Nicholi

II, et al., "Factors correlated with violent video game use by adolescent boys and
girls," J. of Adolescent Health, vol. 41, no. 1, pp. 77-83, July 2007.

[69] T. Bruce, Time to Play in Early Childhood Education. London, UK: Hodder &

Stoughton, 1991.

[70] S. Smilansky and L. Shefatya, Facilitating Play: A Medium for Promoting

Cognitive, Socio-Emotional, and Academic Development in Young Children.
Gaithersburg, MD, USA: Psychosocial & Educational Publications, 1990.

[71] K. Sanford and L. Madill, "Resistance through video game play: It's a boy thing,"

Canadian J. of Educ./Revue Canadienne de L'éducation, vol. 29, no. 1, pp. 287-
306, 2006.

[72] B. Beal, "Alternative masculinity and its effect on gender relations in the

subculture of skateboarding," J. of Sport Behavior, vol. 19, no. 3, pp. 204-220,
Aug. 1996.

[73] C. Bacon-Smith, Enterprising Women: Television Fandom and the Creation of

Popular Myth. Philadelphia, PA, USA: Univ. of Pennsylvania Press, 1992.

[74] H. Jenkins, Textual Poachers: Television Fans & Participatory Culture. New

York, NY, USA: Routledge, 2013.

 130

[75] C. Penley, NASA/Trek: Popular Science and Sex in America. New York, NY,
USA: Verso, 1997.

[76] S. Ferguson, "The children’s culture industry and globalization: Shifts in the

commodity character of toys," in Int. Symp. “Transformations in the Cultural and
Media Industries,” 2006, pp. 1-11.

[77] R. L. Hasen, "Citizens United and the Orphaned Antidistortion Rationale," Ga. St.

UL Rev., vol. 27, p. 989, 2010.

[78] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas. New York,

NY, USA: Basic Books, 1980.

[79] H. Abelson and A. Di Sessa, Turtle Geometry: The Computer as a Medium for

Exploring Mathematics. Cambridge, MA, USA: MIT Press, 1986.

[80] U. Wilensky, "Making sense of probability through paradox and programming,"

in Constructionism in Practice: Designing, Thinking, and Learning in a Digital
World, Y. B. Kafai and M. Resnick, Eds., Mahwah, NJ, USA: Erlbaum, 1996, pp.
269-296.

[81] M. Gura, Getting Started with LEGO Robotics: A Guide for K-12 Educators.

Eugene, OR, USA: International Society for Technology in Education, 2011.

[82] J. Piaget, The Construction of Reality in The Child. Oxford, UK: Routledge, 1954.

[83] S. A. Rose and M. Blank, "The potency of context in children's cognition: An

illustration through conservation," Child Develop., vol. 45, no. 2, pp. 499-502,
June 1974.

[84] B. Inhelder and J. Piaget, The Growth of Logical Thinking from Childhood to

Adolescence. Oxford, UK: Routledge, 1958.

[85] S. Turkle and S. Papert, "Epistemological pluralism and the revaluation of the

concrete," in Constructionism, I. Harel and S. Papert, Eds., Westport, CT, USA:
Ablex, 1991, pp. 161-191.

[86] E. F. Keller, A Feeling for the Organism: The Life and Work of Barbara

McClintock. New York, NY, USA: Henry Holt, 1983.

[87] C. Gilligan, In a Different Voice: Psychological Theory and Women's

Development. Cambridge, MA, USA: Harvard Univ. Press, 1982.

[88] S. Papert, "Teaching children thinking," Contemporary Issues in Technology and

Teacher Educ., vol. 5, no. 3, pp. 353-365, July 2005.

 131

[89] R. Eglash and D. Banks, "Recursive depth in generative spaces: Democratization
in three dimensions of technosocial self-organization," The Inform. Soc., vol. 30,
no. 2, pp. 106-115, Mar. 2014.

[90] B. Latour, We Have Never Been Modern. Cambridge, MA, USA: Harvard Univ.

Press, 1993.

[91] C. Bowers and F. Apffel-Marglin, Eds., Rethinking Freire: Globalization and the

environmental crisis. Mahwah, NJ, USA: Erlbaum, 2005.

[92] M. Foucault, The Archaeology of Knowledge. New York, NY, USA: Harper &

Row, 1972.

[93] S. Traweek, Beamtimes and Lifetimes: The World of High Energy Physicists.

Cambridge, MA, USA: Harvard Univ. Press, 1988.

[94] NGSS. (2013, Jan. 21). Next Generation Science Standards [Online]. Available:

http://www.nextgenscience.org/next-generation-science-standards, Date Last
Accessed 11/02/2014.

[95] N. Gonzalez, L. C. Moll, and C. Amanti, Eds., Funds of Knowledge: Theorizing

Practices in Households, Communities, and Classrooms. Mahwah, NJ, USA:
Erlbaum, 2005.

[96] NABT. (2008, Jan. 11). Sustainability in life science teaching [Online].

Available: http://www.nabt.org/websites/institution/index.php?p=520, Date Last
Accessed 11/02/2014.

[97] NCTM. (2013, Jan. 11). Connections [Online]. Available:

http://www.nctm.org/standards/content.aspx?id=26855, Date Last Accessed
11/02/2014.

[98] CSTA. (2012, Sept. 11). CSTA K-12 Computer Science Standards, Rev. 2011

[Online]. 2014. Available:
http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf, Date Last
Accessed 11/02/2014.

[99] M. Ascher, Ethnomathematics: A Multicultural View of Mathematical Ideas. Boca

Raton, FL, USA: CRC Press, 1994.

[100] R. Lara-Alecio, B. J. Irby, and L. Morales-Aldana, "A mathematics lesson from

the Mayan civilization," Teaching Children Math., vol. 5, no. 3, pp. 154-159,
Nov. 1998.

 132

[101] M. M. Jennings. “Rain-forest algebra and MTV geometry,” in The Textbook
Letter [Online]. Nov.-Dec., 1996. Available:
http://www.textbookleague.org/75math.htm, Date Last Accessed 11/02/2014.

[102] B. Zolkower, "Math fictions," in Technoscience and Cyberculture, S. Aronwitz,

B. Martinsons, and M. Menser, Eds., New York, NY, USA: Routledge, 1996, pp.
57-96.

[103] R. Eglash, "When math worlds collide: Intention and invention in

ethnomathematics," Sci., Technology & Human Values, vol. 22, no. 1, pp. 79-97,
Winter 1997.

[104] R. Eglash, "Race, sex, and nerds: From black geeks to Asian American hipsters,"

Social Text, vol. 20, pp. 49-64, Summer 2002.

[105] J. Lipka, J. Webster, and E. Yanez, "Factors that affect Alaska Native students’

mathematical performance [Special issue]," J. of Amer. Indian Educ., vol. 44, no.
3, pp. 1-8, 2005.

[106] E. Harrison. (2011, Nov. 24). From Ordinary Shopper To Celebrity, Overnight

[Online]. Available: http://www.npr.org/2011/01/05/132379365/from-ordinary-
shopper-to-celebrity-overnight, Date Last Accessed 11/02/2014.

[107] D. Oyserman, K. Harrison, and D. Bybee, "Can racial identity be promotive of

academic efficacy?," Int. J. of Behavioral Develop., vol. 25, no. 4, pp. 379-385,
Aug. 2001.

[108] I. Altschul, D. Oyserman, and D. Bybee, "Racial‐Ethnic identity in mid‐

adolescence: Content and change as predictors of academic achievement," Child
Develop., vol. 77, no. 5, pp. 1155-1169, June 2006.

[109] A. Celious and D. Oyserman, "Race from the inside: An emerging heterogeneous

race model," J. of Social Issues, vol. 57, no. 1, pp. 149-165, Spring 2001.

[110] R. Eglash, J. E. Gilbert, V. Taylor, and S. R. Geier, "Culturally responsive

computing in urban, after-school contexts two approaches," Urban Educ., vol. 48,
no. 5, pp. 629-656, Sept. 2013.

[111] K. Eyferth, "Leistungen verschidener Gruppen von Besatzungskindern in

Hamburg-Wechsler Intelligenztest fur Kinder (HAWIK) [Performance of
different groups of occupation children on the Hamburg-Wechsler Intelligence
test for children]," Archhiv fur die gesamte Psychologie, no. 113, pp. 222-241,
1961.

[112] P. Arcidiacono, A. Beauchamp, M. Hull, and S. Sanders. (2011, Jan. 11).

Isolating Mechanisms for the Racial Divide in Education and the Labor Market:

 133

Evidence From Interracial Families [Online]. Available:
http://www.aeaweb.org/aea/2014conference/program/retrieve.php?pdfid=836,
Date Last Accessed 01/11/2014.

[113] P. Freire, Pedagogy of the Oppressed. New York, NY, USA: Bloomsbury, 2000.

[114] E. Gutstein, "Teaching and learning mathematics for social justice in an urban,

Latino school," J. for Research in Math. Educ., vol. 34, no. 1, pp. 37-73, Jan.
2003.

[115] M. Adams, "Hybridizing habitus and reflexivity: Towards an understanding of

contemporary identity?," Sociology, vol. 40, no. 3, pp. 511-528, June 2006.

[116] J. J. Ryoo, J. Margolis, C. H. Lee, C. D. Sandoval, and J. Goode, "Democratizing

computer science knowledge: Transforming the face of computer science through
public high school education," Learning, Media and Technology, vol. 38, no. 2,
pp. 161-181, Jan. 2013.

[117] K. A. Scott and M. A. White, "COMPUGIRLS' standpoint culturally responsive

computing and its effect on girls of color," Urban Educ., vol. 48, no. 5, pp. 657-
681, Sept. 2013.

[118] M. Tedre and R. Eglash, "Ethnocomputing," in Software Studies: A Lexicon, M.

Fuller, Ed., Cambridge, MA, USA: The MIT Press, 2008, pp. 92-101.

[119] M. A. Millerick, "Multicultural students’ perspectives on their mathematics

education," M.S. thesis, School of Educ., Dominican Univ. of California San
Rafael, CA, 2008.

[120] R. Eglash, A. Bennett, C. O Donnell, S. Jennings, and M. Cintorino, "Culturally

Situated Design Tools: Ethnocomputing from field site to classroom," Amer.
Anthropologist, vol. 108, no. 2, p. 347, June 2006.

[121] P. E. Willis, Learning to Labor: How Working Class Kids Get Working Class

Jobs. New York, NY, USA: Columbia Univ. Press, 1977.

[122] P. Bourdieu and L. J. D. Wacquant, An Invitation to Reflexive Sociology. Chicago,

IL, USA: Univ. of Chicago Press, 1992.

[123] K. D. Gutiérrez and B. Rogoff, "Cultural ways of learning: Individual traits or

repertoires of practice," Educational Researcher, vol. 32, no. 5, pp. 19-25, June
2003.

[124] M. Pollock, "Race bending: Mixed youth practicing strategic racialization in

California," Anthropology & Educ. Quart., vol. 35, no. 1, pp. 30-52, Jan. 2004.

 134

[125] M. Pollock, Everday Antiracism: Getting Real About Race in School. New York,
NY, USA: New Press 2008.

[126] J. Blomberg and M. Burrell, "An ethnographic approach to design," in Human-

Computer Interaction: Development Process, A. Sears and J.A. Jacko, Eds., Boca
Raton, FL, USA: CRC Press, 2009, pp. 71-94.

[127] G. B. West, J. H. Brown, and B. J. Enquist, "A general model for the origin of

allometric scaling laws in biology," Sci., vol. 276, no. 5309, pp. 122-126, Apr.
1997.

[128] T. D. Cook, D. T. Campbell, and A. Day, Quasi-Experimentation: Design &

Analysis Issues for Field Settings. Boston, MA, USA: Houghton Mifflin, 1979.

 135

Appendix 1 Culture vs. Non-Culture Pre/Post Test

1) Define the following terms in your own words. You may draw images to help you
explain.

a) Exponential Growth

b) Exponential Parameter

c) Tangent Vector

d) Angle

e) Degree

f) Cartesian Plane

2) Describe how you would create the following figure using math or computing.

3) Name three examples of logarithmic spirals in nature.

 a)

 b)

 c)

 136

4) Look at spirals a, b, and c below. Put the spirals in order from the smallest to the
largest exponential parameters. 1 being the smallest and 3 being the largest.

1. _______ 2. ________ 3. ________

a.

b.

c.

 5) Describe the shape below mathematically.

 137

6) Give three examples of logarithmic spirals in everyday life.

 a)

 b)

 c)

 7) Look at shapes a and b, which shape is found more in nature? Circle the answer below.

 a.

 b.

 c. Neither shape is found in nature.

8) Draw two circles that intersect from the tangent vectors below.

 138

	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENT
	ABSTRACT
	1. INTRODUCTION
	1.1 STEM and Underrepresentation
	1.2 Myths of Cultural and Genetic Determinism
	1.3 Research Questions
	1.4 Cultural Capital
	1.5 Measuring Success in Computational Thinking
	1.6 Software Development
	1.7 Content Agnostic Position
	1.8 Conclusion

	2. WHY ETHNOCOMPUTING?0F 1F
	2.1 Introduction
	2.2 Ethnomathematics
	2.3 Ethnomathematics to Ethnocomputing
	2.4 From CSDTs to pCSDTs
	2.5 Domains of Interaction in the Classroom
	2.6 Inquiry Learning
	2.7 Ethnocomputing: Kente cloth
	2.7.1 The History of Kente Cloth
	2.7.2 Kente Cloth pCSDT

	2.8 Ethnocomputing: Adinkra Stamping
	2.8.1 The History of Adinkra Stamping
	2.8.2 Adinkra Stamping pCSDT

	2.9 Conclusion

	3. SOFTWARE DEVELOPMENT AND HCI2F
	3.1 Introduction
	3.2 Software Development
	3.2.1 The Programmable Culturally Situated Design Tools
	3.2.2 The pCSDT Architecture
	3.2.3 The pCSDT User Interface
	3.2.4 Cornrow Curves Simulation
	3.2.5 Kente Cloth Simulation
	3.2.6 Adinkra Simulation

	3.3 Human Computer Interaction and the pCSDTs
	3.3.1 Mental Models
	3.3.2 Cognitive Loading

	3.4 Ethnographic Studies
	3.4.1 Case Study: Adinkra Stamping
	3.4.2 Case Study: Kente Cloth Simulation

	3.5 Conclusion

	4. CONTENT AGNOSTIC POSITION3F
	4.1 Introduction
	4.2 Potential Disadvantage to the Content Agnostic Position: Four Categories
	4.2.1 Use of Inappropriate Material
	4.2.2 Tendency to Gravitate Towards Violent Video Game Formats
	4.2.3 Tendency to Gravitate Towards Commercial Content in General
	4.2.4 Differential of Computational Complexity between Commercially and Non-Commercially Engaged Projects

	4.3 Constructionism and Contextualism as Orthogonal Dimensions
	4.4 Content-Aware Learning: Examples from Culture-Based and Social Justice Based Math Education
	4.5 Content-Aware Constructionist Learning in Computer Science Education
	4.6 Conclusion

	5. FORMATIVE DATA ANALYSIS8F 9F
	5.1 Introduction
	5.2 The Use of Ethnography
	5.3 Ethnographic User Stories
	5.3.1 Cornrow Curves Simulation with Two Students
	5.3.2 Kente Cloth Weaving Simulation with a Class

	5.4 Ethnographic Developer Stories
	5.4.1 Kente Cloth
	5.4.2 Adinkra Stamping

	5.5 Conclusion

	6. SUMMATIVE DATA ANALYSIS11F
	6.1 Introduction
	6.2 Ghanaian Adinkra Symbols and Logarithmic Spirals
	6.3 Experiment Overview
	6.4 Control Group Lesson
	6.4.1 Class Period Overview
	6.4.2 Class Period Narrative

	6.5 Intervention Group Lesson
	6.5.1 Class Period Overview
	6.5.2 Class Period Narrative

	6.6 Results
	6.7 Conclusion

	7. CONCLUSION
	7.1 Contributions to Science
	7.2 Contributions to Society

	References
	Appendix 1 Culture vs. Non-Culture Pre/Post Test

